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PREFACE

’The present SINDAkcsmputer program,has,evolvéd from the CINDA-3G
program,‘which in turn evolved from the CINDA program, etc. With each
major program revision an updated user manuallwas generated, bﬁt;a more
in-depth presentation of programming considerations. and the theoretical
development of the numerous subroﬁtiﬁes were not generated.- This SINDA
program manual represents a preliﬁinary effort to{fill some of the existing
void by describing the program structure, by identifying the major functions'
of each processor routine with a functional flow chart, and by a more
in-depth mathematical description of the numerical solution subroutines.

It is not the intent of this engihéering#program manual, however, to pro-
vide sufficient detailed information for a user to make mbdifications

and/or additions to the existing subprograms.

xiii



1.1

NOMENCLATURE AND MNEMONICS

.meenclature

aij ='k(A/£)ij’ conduction coefficient betwee#-nodés i
and j.

A = array T

A = area ' ,

(A/%)ij = effective ratio of cross-secticnal area to distance
between nodes 'i and j.

bij = radiation féctor between nodes i and j (composed of
radiation interchange factor and area)

i = capacity of ith néde

Ei =,Ci/At, capacity of ith node divi&éd by time-step

DD = 1 -~ DN (allows certain fraction of “old"’temperaturé
to be included as part of temperature change for .

" current time~gtep, refer to Section 6;2.5.1)

DN = DAMPA (user control constant, refer to Sections 6.2.5.1
and 6.2.3.2) | N

F,F1,F?2 = multiplying factors, either user'constants'or literals,
refer to Tables 6.2-1, 6.2-2 and 6.2-3).

Gy = a;; + oby, a? + T§)(Ti +1,)

Gk = aij or Obij’ condugtion”br»radiat%on coefficient.

k = thermal conductivity

L ='a iitéfal multiplying factor

N = number of variable temperature nodes (NNA + NND)

NNA = number of arithmetic-nodes ‘

NND = pumber of diffusion nodes

= resistance

P = total number of nodes

lqi‘ = impressed heat load into the ith node

t = time

At = time—stép )

t = (TIME§ + TIMEN)/2.0, mean time -

T = temperature (°F or °R)

Tm = ('I'i + Tj)IZ,O, mean.te@perature (°F or °R)

1-1
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X, ¥ = coordinate

¢] =,(k/C), thermal diffusivity
p - N . .
o - I 'Gijlci’ refer to equation 6.3-7
j=1
B = factor that ranges from 0vt011/2 (refer to equation 6.2-7)
B' = 2B (used in subroutine CNVARB) N
Py = radiation interchange factor including inter-

reflections betweén nodes i and j.

c =_Stefan—Boltzménn constant (.1714 x 1()'-8 Btu/hr °R4ft2)
e '
L = ZE;:;*;sz; , weighting factor (equation 6.3-13)

(Ai:tm) Interpolated value of array A using tm as the independent variable

(Ai:Ti) " noowoom " " Tj_ ’ n " " 1
i
(1)) " " w o ow " " oo " u "
3 S i
¢ Ai T ) " w on noon n T n " 1 "’
(Ap: Ti) Poiynomia}. 1" " | woow " Tj_ 7" " " "
i AP s Ti) " " " m " 18 Tj " " " "
(AP?;T ) " " n wo.onoom T " u n n

(Ab:Ti,tm) Interpolated value of the bivariate arfay A using Ti and s
as independent variables.
(Ab:Tm,tm)A Interpolated value of the bivariate array A using Tm and t

as independent wvariables.

Subécrigts

i = ith node

3 = jth node

ij = between nodes i and j

i;n = updating of ith temperature, source, etc. at time-
step n. ' -

ik = updating of ith temperature, etc. at kth iteration.

ij,n = updating of coefficient between modes i and j at
time-step n o

ij,k = updating of coefficient between nodes i and j at

kth iteration

==

m = mean



1.2.1

ARLXCA
ARLXCC
ATMPCA
ATMPCC
BACKUP
BALENG
CSGFAC
CSGMAX
CSGMIN
CSGRAL
DAMPA

DAMPD

DRLXCA
DRLXCC
DTTMEH
DTIMEI
DTIMEL
DTIMEU
DIMPCA
DTMPCC
ENGBAL
ITEST

JTEST

KTEST

LAXFAC

LINECT
L@GPCT
N@COPY
NL@gP

$PEITR

PAGECT

Mpemonics

Control éoqstants (refervto Sections 6.2.3.1 and~6.2.3.2)

‘allowable arithmetic node relaxation temperature change

calculated maximum arithmetic node relaxation temperaturé change
allowable arithmetic node temperature change

calculated maximum arithmetic node temperature change

back switch .

specified system enetgy balance

time-step factor
maximum. value of Ci/Z Giii

ij
allowable range between CSGMIN and CSGMAX

minimum value of Ci/Z G

arithmetic node damping factor

diffusion node damping factor

allowable diffusion node relaxation temperature change
calculated diffusion nodz relaxation temperature change
allowable maximum time—stép .

specified time-step for implicit solutions

allowzble minimum tiﬁe—step

contains computed time-step '

allowable diffusion‘node temperature change

calculated maximum diffusion node temperature change
calculated system enérgy balénce

contains dummy integer constaht

contains dummy integer  constant

contains dummy integer constant

number of iterations for linearized lumped parameter system,
CINDSM only. _

line counter location for>pfogram output

contains number of iterations performed

contains no copy switch for matrix users

number of specified iteration loops

output each iteration switch

page counter. location for program output

1-3
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RIEST = contains dummy floating point constants

STEST = contains dummy floating’point constants

TIMEM = (TIME¢ + TIMEN)/2.0, mean time for computationai interval
TIMEN = TIMEN + DTIMEU, new time at the end of’computafionallinterval '
TIMEND = problem stop time

TIME$ = old time at the start pf’the computational interval
TITEST = contains dummy floating point constants

UTEST = contains dummy floating point comstants

VIEST = contains dummy floating poiﬁt constants

1.2.2 Numerica1:801ution Routines (refer to Sections 6.3 - 6.5)

CINDSS = steady state routine, refer to Section 6.5.1
CINDSL = steady state routine, refer #o Section 6.5.2
CINDSM = steady state routine, refer to Section 6.5.3 °
'CNBACK = implicit routine, refer to Section 6.4.1

CNDUFR = explicit routine, refer to Section 6.3.4

CNEXPN = explicit routine, refer to Section 6.3.3
CNFAST = explicit routine, refer to Section 6.3.2
CNFRDL = explicit routine, refér to Section 6.3.1
CNFWBK = implicit routine, refer to Section 6.4.2
CNFWRD = explicit routine, refer to Section 6.3.1
CNQUIK = explicit routine, refér to Section 6.3.5
CNVARB = implicit routine, refef»toﬁSection 6.4.3

1.2.3 Options (used in Tables 6.2-1 -~ 6.2-3)

BIV

= Bivariate Interpolation y§riable

DIT = Double Interpolation with Time as variable

DIV = Double Interpolation Variable £l

DPV = Double Polynomial Variable

DIV = Double interpolation with Time and Ipmperature as Variables
SIT = Single Interpolation with Time as variable .

SIV = Single Epterbolation.!griableg”

SPV = Single Polynomial Variable

1-4



1.2.4 Routines and Subroutines of Preprocessor .

SINDA = routine that specifies overlay of preprocessor to system allocator.

PREPRQ = main routine for preprocessor; initializes counters and FPRTRAN
logical units; sets leﬁgth qf,dynamic‘storagé array and controls
major logic;

ALPINT = subroutine that accepts an integer in aiphanumeric format and
converts .- it to integer format; determines relative number of
this actual number and converts it back to alphanumeric format.

BLKCRD = subroutine that formats the five generated FPRTRAN routines
(SINDA, EXECTN, VARBL1, VARBL2, and $UTCAL) in 507 word blocks.

CODERD ="Subroutine that reads and checks the block header cards for the
data blocks.

CPNVRT = subrcutiné that converts Hollerith‘data to integer data.

DATARD = subroutine that scans the data block card images under an A

format and determines appfopriate format to reread thé card
images. '

ERBMES = subroutine that prints most of the error messages generated
within the data blocks.

FINDRM = subroutine that moves the data in the dynamic storage array
either up or down by 100 words.

GENLNK = subroutine that generates the driver (F@PRTRAN routine named

' SINDA) for the user's prbgram.

GENUK = subroutine that generates user constants.
INCARE = subroutine that reads data into the dymamic storage array for
. the parameter-runs option.
MXTPFN = subroutine that processes data for the "m" option (converts card
images from mixed FPRTRAN/SINDA notation to FPRIRAN notation.
NPDEDA = subroutine that processes data for node and conductor data
blocks.
PCS2 = subroutine that packs the FPRTRAN addresses for the array and

constants locations required by the second pseudo—compute
sequence.

PRESUB = subroutine that reads and checks the block header cards for the
operations blocks and generates}the non-executable FPRTRAN

cards for eaéh of the operations blocks via a call to BLXCRD.
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PSEUDS
" QDATA

RELACT

SEARCH

SETFMT

SINDA4

SKIP

SPLIT

SQUEEZ
STFFB

TYPCHK
WRIDTA
WRTPMT

WRTBLK

]

]

subroutine that forms the first and second pseudo~compute
sequences. . »

subroutine that checks and processes 21l data input in the source
data block. ‘

sﬁbroutine that finds the relative node numbers from the actual

node nﬁmber;' computes the FORTRAN address for arrays and user

- constants from the actual number.

subroutine that retains a relative number for nodes, conductors,
user constants, and arrays, given the actual number.

subroutine that processes the card for the "new format" option;
that is, it sets up the format for data cards as specified by
the cards with an "N" in column one. |

subroutine that reads and processes the user input cards from
the operations blocks. , ' '
subroutine that is used when a problem is RECALLED; it positions
the tape to the proper problem as specified on the first card of
the data deck.

subroutine that reads the data from the RECALL tape and splits

the RECALL information onto the proper data “tape" and the

dicticnary "tape."

subroutine that compresses the specified data groups in the
dynamic storage array. ' ’ mly

subroutine that filis out a card image in array KBLK with
Hollerith blanks. ,

subroutine that checks the iﬁput from thé data blocks for the
correct type (integer,-floating point, or alphanumeric.
subroutine that writes the program data "tape” in the format
required by INPUTT or INPUTG. '

subroutine that writes the required data for parameter runs *

" n

on the parameter "runs" "tape" and the dictionary "tape.'

subroutine that writes the 507 word blocks contained in array
KBLK on the program FPRTRAN "tape."
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SINDA
LPCS
SPCS
LPCS2
PCsl
- PCS2
TSUM
‘TPRINT

]

Others -

Systems Improvéd Numerical Différending Analyzer
Long Pseudo-Compute Sequencé

Short Pseudo-Compute Sequence

Second Long Pseudo-Compute Sequence

Pseudo-Compute Sequence Qné

Pseudo-~Compute Sequence Two.

elapsed time from-last printout

,tiﬁe of last printout,
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2. BACKGROUND ON SINDA

%1 R
The original CINDA  (Chrysler Improved Numerical Differencing

Analyzer) computer program was developed by'the Thermodynamics Section of
the Aerospace Physics Branch of Chrysler Corporation Space Division at
NASA Michoud Assembly Facility and was coded in FORTRAN-IT and FAP for the
IBM-7094 oomputers. CINDA was the prodoot of an intensive analytical,
engineering and programming effort that(surveyed numerous'thérmal analyzer-
type progfams and studied several in-depth. The foundation fof_CINDA was
the storage and addressing of information required only for the network .
solution and the systems features which allowed the re-utilization of core
storage area and brought into core only those instructions necessary for
the sclution of a particular problem. A systems compiler computer program
that automatically optimized thé utilization of computer core space was
developed. This meant the generation of an integrated operation of relative
addressing, oacking,features, peripheral tape storage units and overlay

features.

CINDA evolved into CINDA-3G? which was developed by the same
group that generated.CINDA'with a majof poftion of the work done under
contract NASA/MSC NAS9-7043. CINDA-3G represented (essentially) a com-
plete rework of CINDA in order to take advantage of the improved systems
software and machine speeds of the 3rd generation computers. CINDA was
unsuitable for standard operation‘oh third generation computers since it
was virtually a self-contained program having its own Update, Monitor and
Compiler. On the other hand, CINDA-3G consisted of a preprocessor
eritten in FORTRAN) which accepted the user input data and the block data
input. The user input data was conve:ted‘into advanced FORTRAN language
subroutines and block data inputrﬁastpassed onto the system FORTRAN Com—
piler. This required a double pass on data where previously only one was
_required,/but the increased speed and improved software of the third

generation machines more than compensated for the double pass.

SINDA® (Systens Improved'Numerioal Differencing Analyzer) was
developed by the Heat Transfer and Thermodynamics Department of TRW Systems
Group, Redondo Beach. Most of the improvements and subroutine additions

to CINDA-3G was done as part of the NASA/MSC contract NAS 9-8389,

* Superscript numbers refer to the literature cited in the Reference Sectiocn.
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entitled, '"Development of Digital Computer program for Thermal Network

Correction.” Programming and systems integration were directed to the
UNIVAC-1108 computer. ' '

SINDA relied quite heavily on CINDA-3G and data deck compatibility
was rigorously followed; as a result, CINDA-3G data decks should, in the
main, be direcﬁly opetaticnal on the SINDA program although some differences

exist. For example, properties are updated before VARIABLES 1 call in -

.CINbAr3G, whereas the properties are updated within the numerical solution

routines after VARIABLES 1 call in SINDA. The primary differences between
SINDA and CINDA-3G are: (1) elimination wherever possible of assembly
language coding; (2) increased ﬁnemonic options to aid the‘program user
in data input; (3) inclusion of a second pseudo computer sequenée for
evaluation of nonlinear network elements; and (4) additional subroutines
such as STEP (sensitivity anélysis) and KAL¢BS—KALFIL (Kalman filtering).
Most of the changes and additions to CINDA-3G were required in order’to
integrate the thermal network correction subroutine package into the » E

existing CINDA-3G program.

- During the development of SINDA a number of useful improvements
became apparent. As a result, mpdifications tc SINDA were made a part of
‘the NASA/MSC contract NASA 9-10435 entitled, "Development of an Advanced
SINDA Thermal Analyzer System.' These changes that include a variable
input format, simplified parameter rums, and generated user constants
were made by the same group that developed SINDA. These improvements are

reported in an updated SINDA users manual,®



3. GENERAL SINﬁA.PROGRAM DESCRIPTION

3.1 SINDA Operating System

SINDA is more like an operating'system rather than applications
program. SINDA is programmed as a preprocessor in order to accommodate
“the desired operations relative to overlay features, data packing,
dynamic storage allocation and subroutine library file, but yet be
written in F¢RTRAN. ‘This preprocessor operates in an integral fash-
' 3, &

ion with a library of numerous and varied subroutines, which may be

called in any desired sequence but yet operate in 2n integrated manner.

The preprocéssor reads ﬁhe input data, assigns relative numbers, packs

this information, forms a pseudo-compute sequence(s) (which will be described
briefly in a later paragraph of this section and is described in more

detail in Section 4, called Preprocessor), and writes the operations

blocks on a peripheral unit as FPRTRAN source language with all of the

data values dimensioned exactly in labeled common. In turn, éontrols are
shifted to the system FPRTRAN compiler which compiles the constructed
subroutines and enters execution. The FPRTRAN allocator has access to the
SINDA subroutineylibrary and loads only those subroutines called by the

problem being processed.

As a result of this type of systems operation SINDA is extremely
dependent upon the systems software. However, once the program is ‘
operational on a particular computer, the user-prepared problem data deck

can be confined to the control éards and deck set-up requirements at a

particular installation.

It should be recognized that the use of a preprocessor provides
a computer with a large capability and considerable flexibility, but
because of the numerous options that are generally offered, user instruc-

tions are more difficult than other thermal analyzer-type programs which
have less flexibility.

3.2 Use of tumpgd—Pafameter Concept

Use of SINDA is based on a lumped parameter representation of a
physical system. This means that SINDA does not solve a set of partial
differential equations that represents a distributive system, but rather

SINDA numerically solves a set of ordinary (and in general) nonlinear



differential equations that representva'lumped parameter system.  The
procedure for the formulation ahd the numerical solutions of the lumped
parameter équations are reported extensively in literature énd basic
considerations are presented iﬁ Section 5. For the discussion to follow
on the pseudo compute sequencé'it'is Conveﬁient to indicate a general set .

of ordinary linear differential heat balance equations,

dT

e e LT B a, (T, 2 T)| (3.2-1)
M =1 Y 1 :
i=1,2,...,N (number of variable temperatures)
. Tj= constant,N< j < p
where, Ci = the ith nodal capacity
q; = the heat load into node i (impressed)
aij = the conduction coefficient between nodes i and i [= k(%)i.]
t = time ?

Suppose an implicit numerical method as discussed in Section 5.2.2 of
this manual is chosen; the implicit finite difference form becomes after

letting,

dTi/dt = (Ti,n+l - Ti,n)/At’ Tj = ""'j,n+'l'and Ti = Ti,n+1,
Tt Tiprn ~Tip) =4 j__z_l 255 T5,n41 = Ti,ne1) (3.2-2)
where, Ti n- temperature at time point'tn
. :
Ti,n+1 = temperature at t;me point tn+-At,
At = time-step

Rearrangement of equation (3.2-2) yields,

- P

— P | |
(€ + jfl 255 Tt ~ 4=1 33 Lo ~ PG T j=§+1 355 T ,a G:2-3)
Jj#i 3 ; »

i

N oM

i=1,2,...,N

' = < q <
Tj,n constant, N< j < p

where, E; = Ci/At, average capacity of node i over At time-step

3.3 Pseudo-Compute Sequence (PCS)

A pseudo-compute sequence as generated by the SINDA.preprocessor



is a 1list cf numbers that indicates the position of requlred data values
This

meaning will become clearer by formulating equation (3.2-3) in a matrix

in various arrays such as conductance, temperature and capac1tance.
form. The matrix formulation is straightforward since temperatures at
time~step n+l are the unknowns and terms on the right side of equation -
(3.2-3) represent the forcing function. Let us expand equation (3.2~3) to

show this,

_ P _ P
€+ 22107 ne3” 210 Ty piaee o2 Tyynir U G  Tan ¥ 02 293 Ty
j=1 : : ) j=N1 ,
+(C. 3 ) C. 3
C + 2 a T sees—a =q,+ C, T + a
“81 l, +l =1 23" "2,n+l 2N N,n+l 2° 72 "2,n j=M1 23 J,n
P _ P .
“ay1 T1,p+170N2 T2, n+l""(CNl 8 TNyl = W Oy Ty L 2y Ty
l j=NH
Thus the matrix form of equation (3.2-3) becomes, '
(8] {r'} = {q} (3.3-1)
whére, - -
Ez (C + a ), "8.12 seesy -alN
39‘1
g —
B = —a,1 ,j:l (C2,+ a2j)""’ ~2yn (3.3-2)
. 2 ‘ :
[ i P .
—aNl 3 -aNZ g0esy j__z-:l (CN + aNj)
! 3#2 i
. e P
+C. T + , T,
1,0+l 7% "1,n JuntL °13 “i,n
. L P '
! = ) - . = -
T Tyat ) 3-3-3) {Q} =)q, +¢, Tyat z a5 T n (3.3-4)
) _ j:m
— P
TN,n+1 Uy + CN TN,n ._z aNJ jn

The matrix represented b‘y equation (3.3-2) appears to be a full

matrix (very small number of elements that are zero), but in reality most
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of the off- diaganal elements are zero. Thus, if equatlon (3.2~3) was to

| be solved by a matrix inversion technlque, all elements includlng Zeros
must be stored. Since the nuwmber of elements varies as N2 (N is the number
cf nodes), the required number of data locations would wvary -as Nz and the

computer time requlred for matrix inversicn would be p*oportional to N3

The explicit and iterative implicit numerical methods (refer to -
‘Section 5) of solving.equation (3.241)>1end themselves for optimizing the

" data storége area required and for reducing the solution time. If the
conductors are numbered and related to the appropriate adjoining nodes as
indlcated in Table (3.2-1), retention of adjoining node number for. eatb
conductor provides a means of 1dentifying element position in the coefflcient
matrix. This can be seen by considering the one-dimensional heat conduc~-

tion example pictured in Figure (3.3-1).

Figure 3.3-1. Thermal Circuit for a One-Dimensional System

The set of equatlons associated with the problem of Flgure (3.3-1)

may be readlly expressed as,

(c, 1), < , o0 , 0 , 0

1 | I Q|
(0212), <, , 0 , 0 T, ot‘ oo
o . fGsz (c3+G2+c3), =G, > Ty) = (0 (3.3f5)
o, 0., -G (Ca 34+G,), -G, T, 0
o, o s o ., -G4@,(—5+G4) T ‘o

By comparing the element position of equation (3.3-5) with the
tabular identification in Table (3.2-1) it is seen that elements with zero
values need not be stored. The main diagonal term -is never zero and is a

composite of capacitance and off-diagonal conductors.
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Table (3.2-1) Tabular Identification of Conductor
' and Adjoining Node Numbers

Conductance ith Adjoining
Number Node Node Number © .Comnment
Gi N# N#
1 1 2 Gl is conductor #1 between
-nodes 1 and 2.
1 2 1 @1 is conductor #1 between
- nodes 2 and 1. »
2 2 3 G2 is conductor #2 between
’ nodes 2 and 3.
4 5 4 G4 is conductor #4 between

nodes 5 and 4.

It is of interest to note that the use of a pseudo—compu?e sequence
is only one of a number of ways to store data efficiently. For exémple,
TRW TAP® does not employ a pseudo-compute sequence because of other user
requirements. Howevér, from a dataystorage standpoint, it appears that

the use of a pseudo-compute sequence utilizes computer core most efficiently.

More than one pseudo—compute_sequence is formed by SINDA. Both a
so-called long (LPCS) and a so—called short (SPCS) pseudo-compute sequence
as,used'in CINDA-3G? are formed and in addition a second long pseudo-compute
(LPCS2) required for thermal neﬁwdfk’correction is also formed in SINDA. A
detailed discussion of these pseﬁdb—cbmpute sequences will be presented in Sec-
- tion 4.6, but_is of interest here to indicate the characteristics of these

"sequences."

3.3.1 Long Pseudo—Computé Sequence (LPCS)

A long pseudo-compute sequence identifies the position and
value of all off~diagonal elemenﬁs of the coefficient matrix. This is done
by operating on adjoining node numbers which have been assigned relative .
node numbers by the preprocessor. Since nodal temperatures are calculated
sequentially in ascending numerical order, the conductor and adjoining node number
are searched until node one is found with the conductor number and the
other adjoining node number stored in a single core location. 1In addition,

several indicators are stored in this single core location. These
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 indicators are : (1) wvar C (indicates the input of a capacitor'as a vari-
able); (2) var G (indicates the 1nput of a conductor as a variable); (3) rad
(indicates the input of a radiation'cénductance); (4) Q (indicates the
iﬁput of a source in the source data block); (5) one4way (indicates the input
of a ocne-way conductor); and (6) last G (indicates the last conductor to a

particular node). - Order of indicator storage is indicated in Table (3.3-2).

Search is continued until all node-ome's have been located and
characteristics processed. The procedure is repeated for all node-two's
and sc férth sequentially until all nodes have been processed. The '
important consideration of a LPCS is the encounter of each conductor of
the coefficient mat%ix tﬁice. Formation of a pseudo-compute sequence for
the example shown in Table (3}3—1) is'given in Table (3.3-2). A pseudo-
compute sequence starts with node one‘and advances the node number by one
each time a last conductor indicator (last G) is passed. The conductor
and node numbers identify the position of the conductor value in an array
of conductor values and the position of the temperature, capacitor and

source values in arrays of temperature, capacitor and source values

respectively. :

| A long pseudo-compute sequence is well-suited for "successive
point” iteration (refer to Section 5.2.2 for a discussion of this) of the
implicit finite difference.equations because all elements of the coefficient
matrix.are identified. Thus, when a row of the coefficient matrix is
processed and a new value of temperature obtained, the new temperature
can then be used in the calculation procedure of succeeding rows.
3.5.2 Short Pseudo-Computé Sequence (SPCS)

The short pseudo-compute sequence,idéntifies each conductor only
once and since the coefficient matrix (equation 3.3-1) is symmetfical, all
sparsity and off-diagonal elements of the coefficient matrix are accounted
for. The node being processed and the adjoining node number reveal
temperature~ and source-value‘locations;. The short pseudo-compute sequence
for the example in Table (3.3-1) is formed in Table (3.3-3). By placing
a minus sign on the initially encountered other-adjoining nqdeé, these nodes

. are not recognized on a second encounter. A short pseudo-compute sequence
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Table (3.3~1) ‘Example of Coﬁductor Connections

Conductor No. AAdjoining,Nbde Numbers
G N N

G B W N
W BN N e e
SO TWw o W N

Table (3.3-2) Long Pseudo-Compute Sequence (LPCS)
for the Example of Table (3.3-1) -

Node No. Last var var rad Q G# One- Node #
Searched - G C G v way Stored

1

S W W W N NN M

"
oo N LS H W N
WON SN RS W e W

Table (3.3-3) Short Pseudo-Compute Sequence (SPCS)
for the Example of Table (3.3-1)

Node No. Last var var rad Q G# Cne- Node #
Searched G G G __way Stored

1 ' 1 2

1 2 3

1 1 3 4

2 4 3

2 5 4

3 1 6 4

4 0 0
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is ﬂell-suited for expliclt numerical solutlons methods which calculate the
energy flow through the conductor, add it to the source location of the node
being processed and subtract it from the source location for the adjoining
node. The SPCS can be used for implicit methods of solutlon but the "block"
iterative procedure (refer to Sect ion 5.2.2 for a discussion of this) must be
used since succeeding rows of conductor and adjolning node numbers do not

contain the necessary element Anformatlon.

3.3.3 Second Long Pseudo-Compute Sequence (LPCS2)

The second long pseudo-compute sequence (LPCS2) as a user input
option flags a non~linear conductor between two diffusion nodes twice;
LPCS flags the non-linear conductof only one. LPCS2 is required for the
‘thermal network correction of a sparse network by the use of subroutine
KAFIL (refer to Reference 3 or 6). .

3.3.4 Pseudo~Compute Sequence One (PCS 1) and Pseudo-Compute Sequence
Two (PCS 2)

PCS 1 and PCS 2 are not user options but are fixed 1nternally.
The contents of PCS 1 and PCS 2 are governed by the user input of LPCS,
SPCS or LPCS2). PCS 1 contains two relative addresses {conductor and
adjoining node locations), two non-linear type indicators, and an impressed
source indicator. Indicators-are keyed through a simple counter to a
second pseudo—compute sequence (PCS 2) which contains integer addresses
or relative constant and array statting locations necessary for evaluation
of temperature varying coefficients and time varying coefficients for
sources. When the input data contain literal values in SIV type calls,
the preprocessor stores the values as extended user constants and
supplies the relative constant address to the second pseudo-compute

sequence. Detailed discussion on PCS 1 and PCS 2 is presented in Section 4.6.
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3.4 ‘Data Logistics

3.4.1 Relative Numbers

Both the iong and short pseudo-compute sequences réquire the
storage of only the finite values in the coefficient matrix, thereby
taking advantage of matrix sparsity. If the short pseudo*compute sequence
is used, the advantage of symmetry is accounted for. Conductors with the
same constant value méy share the same conductor number and value. The
storage efficiency of the pseudo~compute sequences requires the sequential
numbering of ﬁhe nodes and the .conductors. Since the numbering of thermal
math-models is arbitrary and not sequential, the SINDA program assigns

relative numbers. (starting from one, sequential and ascending) to the

actual numbers of the incoming node data, conductor data, constants data

and array data in the order received. Thus, numbers not used in the

-actual numbering system are neither identified nor required.

3.4.2 Storage Reéuirements and Dynamic Sﬁorage Allocation

All numerical sclution subroutines require three locations for
each diffusion node data (temperatufe, capacitance and sourcej, two
iocations for each arithmetic no&e data (temperature and source), one
location for each boundary data (temperature) and one location for each
conductor value. In addition intermediate data storage ranging from zero
to threée locations per node may be required for the storage of temperatures
and temperature differences; accelération of convergence (refer to
Section 6.2.7) used in tﬁe implicit'and steady state routines (except
CINDSS) requires three-locations.‘fStorage requirements for conductances
depends upon the problem. For examﬁle; each internal diffusion and
arithmetic node of a three-dimeﬁSional conduction system with rectangular?
nodalization will be connected with only three being unique; thus, each
diffusion node (or arithmetic node)‘in a three-dimensional conduction system
requires from six to nine storage 1dcations for data values (temperature,
capacitance, source; three conductors and up to three intermediate locatioms).
Now each of the conductors for the ‘short pseudo-compute Sequence requires
a-single core location that centains two integer values (conductor and '
adjoining node numbers) ahd six indiéatdrs (refer to Section 3.3.1 for

description). Each of the conductors between variable temperatures for the
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- long pseudo-compute sequence requires two core locations since the con~
ductors are used twice during the cqﬁputational process. This means that
each internal node of a three-dimensional conduction system will require

six data addressing locations for the-lbng pseudo~compute sequence and,

on the average, three data addressing locations for the short pseudo-

compute sequence.

Thus for a three-dimensional conduction system {no radiation),
the number of required core locations per node can vary from niné (tempera—

ture, capacitance, source, three'uniguevconductors and three data addressing

locations) to fifteen (temperature§;CapacitanCe, source, six conductors
and six data addressing locations) exclusive of the second pseudo-compute
sequence which is required for variable coefficients, capacitance and

sources.

The user must allocate an airay of data locations which is to be
used for intermediéte data storagéﬂand initialize the array start and length
-indicators. Each subroutine that requires intermediate storage area h%s
access to this array and the start7andv1ength indicators. During a sub-
routine execution a check on the sufficiehcy of space is made and start
aﬁd length indicator are updated,f If a subroutine calls upon another
subroutiﬁe that requires intermediate storage, the called. subroutine
repeats the check and update procedure; Whenevér any subroutine terminates
its operation, the start and lenéth‘iﬁdicators are returned to their entry
values. This process isAtermed "Dyﬁamic Storage Allocation” and allows

subroutines to share a common working area.

3.5 Order of Computafion

A network data deck consistsvofvfour data blocks (node, conductor,
constants, and array), one optional data block (source) and four operations
Blocks whicﬁ are preprocessed byxthé'preprocessor and passed on to the system
FPRTRAN compiler. Non—network problems require no node or conductor data
. blocks. The operations blocks are named EXECUTI@N, VARIABLES 1, VARIABLES 2
and OUTPUT CALLS: the SINDA preprocesscr constructs these blocks into
individual subroutines with the eﬁtry names EXECTN, VARBL1l, VARBL2 and
PUTCAL, respectively. After a suécessful F¢RTRAN compilation, control is
passed to the EXECTN subroutine. This means that the order of computation

depends on the sequence of subroutine calls placed in the EXECUTI@N block
3-10
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by the;prcgram user. No other opefations blocks are performed unless
called upoh'by the user eithér direétly by néme 6r indirectly through a
subroutine call. The numerical'solutioﬁ'subroutines described in
Section 6 internally call upon VARBL1, VARBL2 and $UTCAL; The intefnal
orde: of compﬁtationvfor these routines is similar'with'the primary ’
difference being the numerical solution method. A géneral flow diagram
of the numerical solution routines, as well as a detailed description of

‘each is presented in Section 6.



4, PREPROCESSOR

4.1 General Description

The SINDA preprocessor reads and analyzes the user input deck
and from this information constructs a program tailored to the user's

requirements.

The rationale for a preprocessor is fJex1bility and speed.
'Flexiblllty is achieved by providing the user w1th a library of routlnes

to solve problems, manlpulate data,,and_print selected values. In additlon,
the user may insert non-SINDA routines into the constructed program. Speed
(defined here as minimal execution time) is achieved by structuring the

data in an efficient manner.

The SINDA preprocessor consists of thirty routines with seven .
overlay links. All of the routines-are written in FPRTRAN except for one
assembly language routine which writes»a "tape" in a format acceptable to
the FPRTRAN compiler. These routines provide the user with a number of
major options in the type of problem to be solved and the form of the
data to be used. Henceforth these major options are designated as "majbr
logic" of the preprocessor. See Figure 4.1-1 for a flow chart of the

major logic'of the preprocessor and its interface with the user program.

The major logic consists of the five following options: (1) NASA
MSC EDIT feature; (2) RECALL option; (3) generation of a THERMAL
problem; (4) generation of a GENERAL.problem; (5) and PARAMETER RUNS
option. The primary features of each item of the major logic is discussed

below.

(1) EDIT feature: The first card of the deck is checked for
the user request of the EDIT feature. If the EDIT feature
is requested the input "tape"_iskchanged from the system
input "tape" to the EDIT "tape" and control is transferred
to subroutine EDIT for processing. On return a branch is .

‘ méde to the THERMAL or GENERAL section as spécified by the
data on the EDIT "tape." If the EDIT feature has not been
requested, the check for RECALL is made.

(2) RECALL option: The first card.of the deckris,checked for
user request of the RECALL option. -If the RECALL option

4 -1
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Initialize dynamic étorage
length and FPRTRAN logical

units
Yes
Read & edit data; ‘Edit
write "tape” for
input to SINDA No
Recall Tes Find proper problem
read data from "tape"
- No ' ’
‘Read data blocks, write data - |
. & dictionaries on "tape'
GENERAL .
Sy
THERMAL g

Form pseudo-compute sequence,
write it on "tape"

il

o o

Write users main program
"SINDA" on 'tape"

!

Read instructions blocks, write

-{ four corresponding subroutines.
on tape :

m—
i

Process parameter runs, if any,
write data on "'tape”

l

Terminate preprocessor !

Figure 4.1-1.

-SINDA Preprocessor - Major Logic

and Interface with the User Specified Problem
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is requested, control is transferred to subroutine SPLIT for pro-
cessing. On return a branch is made to the PARAMETER RUNS section,
If the RECALL option has not been requested;Athe second card of
the deck is checked for the type of problem, THERMAL or CENERAL.

(3) THERMAL problem: The type of pseudo-compute sequence requested is
noted, the title block is read, the data blocks are read and pro-
'fcessed, the pseudp-compﬁte sequence is formed, the driver for the
user program (SINDA) is written on "tape," the operations blocks

. are read and processed and their FPRTRAN equivalents are written

-on "tape," and finally a check is made for the user requests of

the PARAMETER RUNS option.

(4) GENERAL problem: This section is identical to a THERMAL problem
except that only constants data and array data of the data blocks
are read and processed; a pseudo-compute sequence is not

formed.

(5) PARAMETER RUNS option: A check is made for the user request of
the PARAMETER RUNS optiom.  If the PARAMETER RUNS option is
requested, the appropriate data blocks are read and processed.

If not, the preprocessor is terminated.

Description of SINDA preprocessor routines is presentea in the

sections to follow. Terminology used in the description is listed and
defined in Table 4.1-1. B



Table (4.1-1) Terminology Used in Description of
‘ SINDA Preprocessor Routines

(1) DATA BLOCKS: The five user input blocks which contain data rather
than instructions; these DATA BLOCKS are NODE DATA, CONDUCTOR DATA,
CONSTANTS DATA, ARRAY DATA and thé optional blocks SOURCE DATA.

(2) OPERATIONS BLOCKS: The four user input blocks which contain instruc-—
tions on problem solution, as oppdsed to data contained in the DATA
BLOCKS. These OPERATIONS BLOCKS are EXECUTI¢N, VARTABLES l;
VARIABLES 2 and $UTPUT CALLS.

(3) Non-fatal errbr: An error that does not terminate the preprocessor
immediately. That is, the preprocessor will continue scanning the
remaining cards of the input deck for errors. However, the user

program will not be executed.
(4) Fatal error: An error that termiﬁates'the run immediately.
(5) N/A: Means not gpplicabié.‘

(6) "TAPE": The term "tape" in quotes is used to signify any external
' storage device. That is, any piece of computer hardware, excluding
the central processor, on which data can be stored and retrieved. The

three most familiar examples are: magnetic tape, drum and disk.

(7) Dictionary: A list of the actual SINDA'numbers in relative order.
 For example,. the actual node number corresponding to the kth

relative node number is the kth item of the node number dictionary.

(8) Data group: A data group composed of the pertinent information
extracted from a particular data block. TFor example, the two groups
derived from the constants data are: the user constants numbers and

the user constants values.

(9) Bit manipulation: Terminology that implies the ability to store and
access information within a computer word. This capability is also

called packing and unpacking.
(10) Routine: A general term used to describe any program element.

(11) Subroutine: A special type of program element that is callable from

a routine.

(12) Fixed constants: The term used in the preprocessor for control constants.
4 - 4
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4.2 Description of Subroutines

Sections 4.2.1 through 4.2.30 below describe the 30 routines
of the SINDA preprocessor. .TheAdescriptions are based on the UNIVAC 1108
computér uﬁdgr the EXEC II operating system} it should be undérstood,
however, that much of the information is machine-dependent and is depen-
dent upon the facilities operatiﬁg system.A Note that the element named
SINDA (Sectioﬁ 4.2.1) and the éleﬁeniEnamed'PREPR¢E(Section‘4.2 2) are not
subroutines in the technical sense of the wofd' “hence, these two elements

are referred to by the more general term routine.

Each element of the preprocessor is descrlbed by the following ‘

eleven subtitles:
(1)~ SUBROUTINE NAME - this specifies the name of the element.

(2) PROGRAMMING LANGUAGE - This may be FPRTRAN, ASM, or MAP. F@PRTRAN
implies FPRTRAN V, ASM stands for assembly language (some-
times called SLEUTH II) and MAP is a special language Wthh

defines the overlay structure.

(3) PURPOSE - This gives a brief statement of the functiomal

capabilities of the. element.

-(4) RESTRICTIONS -~ This gives an 1nd1cat10n of where the input
pardmeters-come from, the form of the input parameters and

the placement of the output parameters.

(5) "TAPES" USED - This represents a list of eachAF¢RTRAN logical

unit referenced within this element:

(6) SPECIAL FEATURES - This specifies programming features that are
unique to a particular machlne. - _
(7) OTHER SUBROUTINES CALLED - This represents a 1ist of the

external :eferences.‘_

(8) CALLING SEQUENCE - This gives a 1iStvqf the subroutine arguments,
if any, and a brief disguSsion of«ﬁheir use.

'(9)_ ERROR PROCEDURES - This discusses the steps taken when an error
is encountered.

(10) STORAGE REQUIRED - This gives the octal and decimal storagé

requiréd for this element.

(11) LABELED COMMON - This represents a’iist‘of each labeled common

name used in this element.
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4,21 ROUTINE NAME: SINDA

PROGRAMMING LANGUAGE: MAP

PURPOSE: This routine specifies the overlay structure of the preprocessor

to the system allocator (1oadef). 

RESTRICTIONS: N/A

. "TAPES" USED: N/A

SPECIAL FEATURES: N/A .~ -

OTHER SUBROUTINES USED: N/A - -

CALLING SEQUENCE: N/A

ERROR PROCEDURES: N/A

STORAGE REQUIRED: N/A

LABELED COMMON: N/A e \

4-6
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£.2.2 ROUTINE NAME: PREPR@

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This routine is the main routine (i.e., the drivef) for the pre-
processor. It initializes the counters and FORTRAN logical units, sets the
length of the dynamic storage array, and controlé the major logie. The |
major logie inéludes:v (1) the EDIT feature (NASA MSC only);’ (2) the
RECALL of a stored problem; (3) setup of a new user problem; (4) and

preprocessor termination procedures.

RESTRICTIONS: N/A

"TAPES" USED:

System input "tape" NIN
System output "tape" N@UT
Problem data “tape" LB3D
Problem FORTRAN "tape" LB4P
Dictionary "tape" LUT1
Parameter runs "tape" LUT3} |
Recall "tape" LUT7"
Internal scratch "tape" INTERN

SPECIAL FEATURES: System error termination - the problem data unit (LB3D)
and the probleﬁ FORTRAN unit (LB4P) are flagged to stop Before the data
scan begins in the event that a sjstem error terminates the preprocessor
prematurely. The reason the problem’data unit is flagged to stop is that

for a RECALL problem the problem FORTRAN unit must not be written on.

OTHER SUBROUTINES USED: C@DERD, GENLNK, PRESUB, PSEUD@, SINDA4, SPLIT and
WRTBLX. L

. CALLING SEQUENCE: N/A

ERROR PROCEDURES: The error termination procedures are controlled by three
flags named ERDATA, PRPGRM, and ENDRUN. The three flags‘are in the labeled
éommon block named DATA. ERDATA is used to flag non-fatal errors encountered
ﬁhile reading the data blocks, while PRPGRM performs the same function for

the operations blocks. See Section 4.7.2.

STORAGE REQUIRED: 443 octal words = 291 decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET, CRDBLK, DATA, L@GIC, PLPGIC, and TAPE.

b -7
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4.2.3 SUBROUTINE NAME: ALPINT

PURPOSE: This subroutine accepts an integer in the alphanumeric format nAl,
and converts it to integer format, determines the relative number of this

actual number, and converts the relative number back to an alphanuméric

format of the form mAl.

RESTRICTIONS: The input and output is transmitted via the labeled commen

block named CIMAGE (see Section 4.3). The input must consist exclusively

of the ten decimal digits.

"TAPES™ USED: System output "tape" . N@UT

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: SEARCH

CALLING SEQUENCE: ALPINT (KLET,IST,IEND,J)

KLET is an integer variable that indicates which dictionary
is to be used for converting actual to relative.

IST is the starting location of the alphanumeric integer.

IEND is the ending location of the alphanumeric integer.

J points. to the last 1o¢ation + 1 of the converted integer.

ERROR PROCEDURES: 1In the event that a given actual number has no relative

number in the dictionary list, an error message will be issued and the

relative operations blocks error flag (PRPGRM) will be set to 1.0.

STORAGE REQUIRED: ‘665 octal Wordsv= 437 decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET, CIMAGE, DATA P@INT, and TAPE.
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4,2.4 SUBROUTINE NAME: BLECRD

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This»sﬁbroutine formats the five generated FPRTRAN routines

(SINDA, EXECTN, VARBL1, VARBL2, and @UTCAL) in 507 word blocks, which are
acceptable to the FPRTRAN compiler. This information is stored in labeled
common block CRDBLK, arxvay KBLK. A complete discussion of the required tape
format is found in UNIVAC 1108; EXEC 1I, Programmers Reference Manual,
UP-4058 C, Appendix D.4 entitled, Program Elements on Magnetic Tape (via
CUR). '

RESTRICTIONS: The input is Hollerith card images with a 14A6 format.
It is transmitted either through the array IMAGE in labeled common CRDBLEK,
or through "tape' INTERN.

"TAPES" USED: Internal scratch "tape" INTERN

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: STFFB ‘ and WRTBLK

CALLING SEQUENCE: BLKCRD

ERROR PROCEDURES: none

STORAGE REQUIRED: 753 octal words = 491 decimal words. See Section 4.7.1.

LABELED COMMON: CRDBLK and TAPE.
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4.2.5 SUBROUTINE NAME: C@DERD

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine reads and checks therblock header cards for the
data blocks. It also performs the following functions: (1) the second
data card of the deck is checked for a thermal or gemeral problem, and if
it is a thermal problem the type of'pseudo—compute sequence specified is
noted; (2) the title block is reéd and processed; (3) the actual arréy
and constant numbers from the automated options are converted into FPRTRAN
addresses; and (4) the parametef run block header cards are read and
checked. ‘ o

RESTRICTIONS: None

"TAPES USED: System input. "tape" NIN
‘ System output "tape" NQUT-
F@RTRAN V reread 30

SPECIAI. FEATURES: The FPRTRAN V intrinsic function FLD is used for bit

manipulation.

CALLING SEQUENCE: C@DERD

_ ERROR PROCEDURES: In general, the errbré checked for in this subroutine

are of the fatal type; for example,vdata blocks out of order. The result
of a fatal error is that the fatal error flag (ENDRUN) is set to 1.0 and

control is returned to PREPRO for immediate termination.

STORAGE REQUIRED: 3213 octal words = 1675 words decimal. .See Section
4.7.1. A |

LABELED COMMON: BUCKET, DATA, L@GIC, PL@$GIC, and TAPE.

4°- 10
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4.2.6 SUBROUTINE NAME: C@NVRT

PROGRAMMING LANGUAGE: FQRIRAN

PURPOSE: This subroutine converts Hollerith data to integer data.

RESTRICTIONS: The Hollerith data must bé contained in one word and con-
sist of only the ten decimal digits.

"TAPES” USED: None

_ SPECIAL FEATURES: The F¢RT§AN V intrinsic function FLD is used for bit
manipulatiou. S ’

-

OTHER SUBROUTINES USED: ERRMES',

CALLING SEQUENCE: CONVRT (1ST, IEND, ITEMP,CRDERR)

IsT is the pointerrto’the first bit of the first character.

TEND is the pointef to the first bit of the last character.

ITEMP is the word containing the Hollerith data on entry and
the integer number on return. |

CRDERR is a logical error flag which is set true if an error

is encountered during the conversion.

ERROR PROCEDURES: If a non~integer is encountered, an error message is
printed and CRDERR is set to true.

STORAGE REQUIRED: 150 octal words = 104 decimal words. See Section 4.7.1.

LABELED COMMON: None

4 -11
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4.2.7 SUBROUTINE NAME: DATARD

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine scans the data block card images under an A
format and determines the appfdpriate‘format (of the form Fn, In, or An)
to reread the card image. The card images are then reread under the
generated format. In‘addition, the constants data block and the array

data block are processed.

RESTRICTIONS: None

"TAPES" USED: System input "tape"  ° NIN

System output "tape" NPUT
FYRTRAN V reread 30

SPECIAL FEATURES: The FORTRAN V intrinsic function FLD is used for bit
manipulation. A '

OTHER SUBROUTINES USED: ERRMES, FINDRM, GENUK, N$DEDA (and its entry
point CPNDDA), SETFMT, SQUEEZ, and TYPCHK.

CALLTING SEQUENCE: DATARD

ERROR PROCEDURES:  All errors checked for in this subroutine are non-fatal.

An error message is printed eithérbinternally or from subroutine ERRMES and
the data blocks error flag (ERDATA) is set to 1.0. .

STORAGE REQUIRED: 5344 octal words = 2788 decimal words. See Section 4.7.1.

LABFLED COMMON: BUCKET, CHECKD, DATA, FLAGS, L@GIC, PLPGIC, PPINT, and
" TAPE. | RS
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4.2.8 SUBROUTINE NAME: ERRMES

PROGRAMMING LANGUAGE: F@RTRAN

PURPQOSE: This subroutine prints most of the’érror messages that can be

generated within the data bldcks,

RESTRICTIONS: None

"TAPES" USED: System output "tape" _  NOUT

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: System subroutine EXIT

CALLING SEQUENCE: ERRMES (JUMP,I,J,K)

JUMP is an integer that points tc the appropriate error message

via a computed GP TP statement

1 are data words which allow a maximum of three printed
J data words per error message. i
K ' _

ERROR PROCEDURES: If the number of error messages printed exceeds 199,

the preprocessor is terminated by a call to EXIT.

STORAGE REQUIRED: 2166 octal words = 1142 decimal words. See Sectiorn 4.7.1.

LABELED COMMON: DATA and TAPE.-
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4,2.9 SUBROUTINE NAME: - FINDRM

'PROGRAMMING LANGUAGE: FPRTRAN

PURPOSE: This subroutine moves the data in the dynamic storage array
either up or down by 100 words. In the process it may delete certain

groups of data that are no longer needed.

RESTRICTIONS: None

"TAPES" USED: System output "tape" N@UT

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: SQUEEZ, and‘sYstemksubroutine-EXIT.

CALLING SEQUENCE: FINDRM(LOCNG,M)

LOCNP is a pointer to a portion of the dynamic storage array
‘where the data group that needs more room resides.
M is the address where the next data value is to be

stored.

ERROR PROCEDURES: TIf the dynamic‘storage array is full, an error message

is printed and the preprocessor is terminated via CALL EXIT.

STORAGE REQUIRED: 407 octal words = 263 decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET L@GIC PPINT, and TAPE.
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'4.2.10  SUBROUTINE NAME: GENLNK

PROGRAMMING LANGUAGE: F@RIRAN

PURPOSE: This subroutine generates the driver, FORTRAN. routine name and

SINDA, for the user's program. ~

RESTRICTIONS: None

‘"TAPES" USED: Internal Scratch "tape" INTERN

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: BLKCRD

CALLING SEQUENCE: GENLNK

ERROR PROCEDURES: None

LABELED COMMON: CRDBLK, DATA, L@GIC, PL@GIC, and TAPE.
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4.2,11 SUBROUTINE NAME: GENUK

. PROGRAMMING LANGUAGE: F@RTRAN
PURPOSE: This subroutiné is used to generate user constants.

RESTRICTIONS: The input data is taken from array TEMP in labeled common

CHECKD and the output data (i.e., the'generated user constants) is put
into array B in labeled common BUCKET.

""TAPES" USED: None

SPECIAL FEATURES: Nome e

OTHER SUBROUTINES USED: ERRMES, FINDRM, and TYPCHK.

CALLING SEQUENCE: GENUK(IWRDS)
IWRDS is the number of words to be processed ip array TEMP.

ERROR PROCEDURES: The input data is checked and if an error is found,

control is transferred to subroutinefERRMES.

STORAGE REQUIRED: 451 actal words = 297 decimzl words. See Section 4.7.1.

LABELED COMMON: BUCKET, CHECKD,,DATA,‘and PHINT.



4,2.12 SUBRCUTINE NAME: INCJRE

PROCRAMMING LANGUAGE: F@RTRAN

PURPOSE:  This subroutine reads.data»into the dynamic storage axraj for

" the parameter runs optiom.

RESTRICTIONS: ©None

" "TAPES" USED: Dictionary "tape" . LUTL

Parameter runs “'tape"  LUT3

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: Nome -

CALLING SEQUENCE: INCRE(ITEST)

ITEST is an integer«flég which determines the data group

group to be read.

ERROR PROCEDURES: None

'STORAGE REQUIRED: 600 octal words = 384 decimal words. See Section 4.7.1.

IABELED COMMON: BUCKET, DATA, 1¢GIC, PLAGIC, PPINT, and TAPE.
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) 4.2,13  SUBROUTINE NAME: MXIPFN

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine processes the data for the "M" option. That is,
it converts card images from mixed FPRTRAN/SINDA notation to FPRTRAN

notation.

RESTRICTIONSi The input (array IH@LL) and output (array JHPLL) are both
in labeled common CIMACGE and they are both in an 80Al format. The F@RTRAN

from array JHPLL is copied to’array‘IMAGE under a 14A6 format for pro-
cessing by the FPRTRAN compiler.

“TAPES" USED: None

SPECIAL FEATURES: The FORTRAN V_intrinsic function FLD is used for bit

manipulation.

OTHER SUBROUTINES USED: ALPINT and BLKCRD

CALLING SEQUENCE: MXT@FN

4 ERROR PROCEDURES: None

STORAGE REQUIRED: 522 octal wordsﬁ='338 decimal words. See Section 4.7.1.

LABELED COMMON: CIMAGE and CRDBLK
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4.2.14 SUBROUTINE NAME: N@DEDA

PROGRAMMING LANGUAGE FﬁRIRAR 

PURPOSE: This subroutine processes the data for the node and conductor
data blocks.

RESTRICTIONS: The input is received via labeled common CHECKD: array TEMP

and the processed data are stored in the dynamic storage array.

YTAPESY" USED: None

SPECIAL FEATURES: This subroutine has a second entry point named C@NDDA.

Also, the FPRTRAN V intrinsic function FLD is used for bit manipulaticn.

OTHER SUBROUTINES USED: ERRMES, FINDRM, RELACT, and TYPCHK

GALLING SEQUENCE: N@DEDA(JUMP,IWRDS)
' or  C@NDDA(JUMP,IWRDS)

JUMP is a flag which indicates which code option (columms 8,
7 9, and 10 of the data card) the user has selected.
~IWRDS is the number of data values in,array TEMP to be

processed.

ERROR PROCEDURES: 1If an error is detected while scanning the input data,

control is transferred to subroutine ERRMES. .

STORAGE REQUiRED: 7030 octal words 3608 decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET, CHECKD, DATA, FLAGS, and P@INT.



4.2.15  SUBROUTINE NAME: PCS2

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine packs the FPPRTRAN addresses for the array and

constants locations required by the pseudo-compute sequence.

RESTRICTIONS: None

"TAPES" USED: None

SPECIAL FEATURES: The FPRTRAN V intrinsic function FLD is used for bit

o -mpanipulation.

OTHER SUBROUTINES-USED: None

CALLING SEQUENCE: ~PCS2(IB,IPCS,LITA)

IB is the word in the dynamic storage array where the
addresses are found.

IPCS is the word into which the addresses are packed.

LITA is a flag that is set to 1 if the array address was
input as a literal and therefore has been added to

the constants data.

ERROR PROCEDURES: HNone

STOBAGE REQUIRED: 54 octal words =‘44 decimal words. See Section 4.7.1.

LABELED COMMON:- None
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4.2.16 SUBROUTINE NAME: PRESUB

PROGRAMMING LANGUAGE: F@RTRAN.

PURPOSE: This subroutine reads and checks the block header cards for the
operations blocks and’generatesbthe non-executable FPRTRAN cards for each

.of the operations blocks via a call to BLKCRD.

RESTRICTIONS: None

"TAPES" USED: System input. "tape" NIN
" System output "tape" NOUT

SPECIAL FEATURES: DNone

OTHER SUBROUTINES USED: BLKCRD

CALLING SEQUENCE: PRESUB(N)

N is an integer from 1 to 4 which indicates which opera-

tions block is being processed.

ERROR PROCEDURES: If the card reéad is not_the'corréCt block header caid,

an error message is printed and the fatal error flag is set to 1.0.

STORAGE REQUIRED: 200 octal words = 128 decimal words. See Section 4.7.1.

LABELED COMMON: CRDBLK, DATA, L@GIC, and TAPE.



\ 4.2.17 SUBROUTINE NAME: PSEUD@

' PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine forms the first and second pseudo-compute

sequence. See Section 4.6.

RESTRICTIONS: The necessary input is ektracted from the dynamic storage

array and the output (the two pseudo-compute sequences) is placed in the

dynamic storage array.

"PAPES" USED: N@RT

SPECIAL FEATURES: The FPRTRAN V intrinsic function FLD is used for bit

~manipulation.

OTHER SUBROUTINES USED: FINDRM, PCS2 and WRIDTA.

CALLING SEQUENCE: PSEUD@

ERROR PROCEDURES: If an error is enébuntered while forming the pgeudo—§

compute sequences, an errox messagé will be printed and the non-fatal

error flag (ERDATA) is set to 1.0.

STORAGE REQUIRED: 2244 octal words = 1188 decimal words. See Section 4.7.1.

" LABELED COMMON: BUCKET, DATA, L¢GIC, PLOGIC, and TAPE.



4.2.138 SUBROUTINE NAME: QDATA

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine checks and processes all data input'in the source
data block. '

RESTRICTIONS: The input is received froﬁ the‘calling Sequence andilabeled

common CHECKD. The processed data is placed in the dynamic storage array.

"TAPES" USED: None

SPECIAL FEATURES: The FPRIRAN V intrinsic function FLD is used for bit
manipulation. S : ‘

OTHER SUBROUTINES USED: ERRMES, FINDRM, RELACT, and TYPCHK;

CALLING SEQUENCE: QDATA (C#DE, IWRDS)

C@DE is the three letter option from columms 8,i9, and 10
. of the data card. ‘ |
IWRDS is the number of words in array TEMP to be processed.

ERROR PROCEDURES: If an error is encountered, control is transferred to.
subroutine ERRMES. N

STORAGE REQUIRED: 1655 octal words = 941 decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET, CHECKD, and PPINT.




4,2.19 SUBROUTINE NAME: RELACT

PROGRAMMING LANGUAGE: F@RTRAN.

PURPOSE: This subroutine finds the relative mode number from the actual
" node number. In addition, it computes the FPRTRAN address for arrays and

user constants from the actual number..

RESTRICTIONS: This subroutine is used in conjunction with the data
blocks. ’ '

"TAPES" USED: None

SPECIAL FEATURES: The FRTRAN V intrinsic function FLD is used for bit
manipulation. ' ' '

OTHER SUBROUTINE USED: ERRMES

CALLING SEQUENCE: RELACT (K,MM,J,JJ)

K determines the path'through the program via a computed

GY TP statement.

MM is the actual number on entry, and the F@RTIRAN address

on return.

J } are print variables for subroutine ERRMES.
JJ

ERROR PROCEDURES: In the event an error is encountered, control is
transferred to subroutine ERRMES. ' .

. STORAGE REQUIRED: 311 octal wprds = 201 decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET, DATA, and PPINT.



4£.2.20 SUBRQUTINE NAME: SEARCH

PROGRAMMING LANGUAGE: F@RTRAN

" PURPOSE: This subroutine returns a relative number for nodes, conductors,

user constants, and arrays, given the actual number.’

RESTRICTIONS: This subroutine is used in conjunction with the operations
blocks.

"TAPES" USED: None

SPECIAL FEATURES: The FPRTRAN V intrinsic function FLD is used for bit

manipulation.

OTHER SUBROUTiNES USED: None

CALLING SEQUENCE: SEARCH(N,IA,NDIM,LAC)-

N is the actual number.
IA is the first word of the dictionary of actual numbers
to be searched.

NDIM is the number of wordé of IA to be searched.

L@C is the relative number returned to the calling program.

ERROR PROCEDURES: If the input actual number is not found in the

dictionary, L@C is set to zero.

STORAGE REQUIRED: 101 octal words = 65 decimal words. See Sectiom 4.7.1.

LABELED COMMON: None




4.2.21 SUBROUTINE NAME: SETFMT

PROGRAMMING LANGUAGE: F@RTRAN |

PURPOSE: This subroutine processes the cards for the "new format” optiom;

that is, it sets up the format:for data cards as specified by the cards

with a’N in column one.

RESTRICTIONS: = The input/output array is passed through the calling

sequence argument.

L3

"TAPES" USED: FPRTRAN V reread = 30

SPECIAL FEATURES:

None

OTHER SUBROUTINES USED: Nome

CALLING SEQUENCE:

JUMP

B

ERROR PROCEDURES:

STORAGE REQUIRED:

SETFMT (JUMP,B) .

is an integer flag that determines the path through .
the code. -

is an array which contains the card images.
None

221 octzl words = 145 decimal words. See Sectiom 4.7.1.

'LABELED COMMON: None




o’

4.2.22 SUBROUTINE NAME: SINDA4

PROGRAMMING LANGUAGE: FPRTRAN

PURPOSE: This subroutine reads and processes the user input cards from the-

operations blocks.

RESTRICTIONS: None

"TAPES" USED: System input "tape" i MIN
Sysﬁem output. "tape" » ~ NgUT
Internal scratch "tape' INTERN
FORTRAN V reread 30

SPECTAL FEATURES: None

OTHER SUBROUTINES USED: BLKCRD, MXT@FN, and SEARCH.

CALLING SEQUENCE: SINDA4 (NAME)

NAME is an integer flag that tells the subroutiné which

operations block is being processed.

ERROR PROCEDURES: 1In the event an error is encountered while processing

the operations blocks, an error message is printed and the erxrror flag
PROGRM is set to 1.0.

STORAGE REQUIRED: 2372 octal words = 1274 decimal words. See Section 4.7.1.

* LABELED COMMON: BUCKET, CIMAGE,ACRDBLK, DATA, L@GIC, PLPGIC, PPINT, and

TAPE.
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4.2.23  SUBROUTINE NAME: SKIP

PRDCRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine is used when a problem is being RECALLed. It
positions the tape to the‘proper problem as'specified on the first card
of the data deck.

RESTRICTIONS: The data is read from tape R. There is no output.

"TAPES" USED: RECALL "tape" 17

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: None

CALLING SEQUENCE: SKIP

ERROR PROCEDURES: None

STORAGE REQUIRED: 324 octal words = 212 decimal words. See Section 4.7.1.

o : t
LABELED COMMON: TAPE R ‘
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4.2.24 SUBROUTINE NAME: SPLIT

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine reads the data fiom the RECALL tape and splits
. the RECALL information onto the program data "tape' (LB3D) and the
dictionary "tape" (LUT1). o ‘

RESTRICTIONS: The input>is,frbmfthe-RECALL "tape" and the output is

placed on the program data “tapg,",thé dictionary "tape," and the

parameter runs '"tape." s

"FAPES" USED: RECALL “tape" o wrr
' ' Program data "tapeﬁ’ " LB3D
: ‘Dictipnary "tape" LUT1
Parameter runs "tape" . LUT3 -

SPECTAL FEATURES:

OTHER SUBROUTINES

None

CALLING SEQUENCE:

ID

ERROR PROCEDURES:

STORAGE REQUIRED:

CALLED: SKIP
SPLIT (ID)

is the RECALL name'punched in the first card of the
data deck.

None

746 octal words =‘486 decimal words. See Section 4.7.1.

- LABELED COMMON: -BUCKET, DATA, and TAPE.
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4.2.25 SUBROUTINE NAME: SQUEEZ

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine compresses the épecified data groups in the

dynamic storagé array. The compr6351on is accomplished by nlac1ng the

data groups sequentlally in the dynamlc storage array.

_RESTRICTIONU:. None

"TAPES" USED: WNone

SPECIAL FEATURES:

OTHER SUBROUTINES

None

USED: Nome

CALLING SEQUENCE:

IST

IEND

ERROR PROCEDURES:

STORAGE REQUIRED:

LABELED COMMON:

SQUEEZ (IST, IEND) *

is the data group number where the compression is to
start.

is the last data group number for this compression.
None

115 octal words = 77 decimal words. See Sectiom 4.7.1.

BUCKET and P@INT



4.2.26 SUBROUTINE NAME: STFFB

PROGRAMMING LANGUAGE: F@RTRAN.

PURPOSE: This subroutine fills out a card image in array KBLK with
Hollerith blanks. » ‘

RESTRICTIONS: The pointers to the words to set to blank are in the

calling sequence, and the array containing the card images is in labeled
common CRDBLK. ’

"TAPES" USED: None

SPECIAL FEATURES: None

OTHER SUBROUTINES USED: None

CALLING SEQUENCE: STFFB(I,J)

-

i is the first work in KBLK to set to blank.
J is the last word in KBLK to set to blank.

ERROR PROCEDURES: None

STORAGE REQUIRED: 41 octal words = 33 decimal words. See Section 4.7.1.

LABELED COMMON: CRDBLK.
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4.2.27 SUBROUTINE NAME: TYPCHK

i PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subfoutine checks the input from the'data blocks for the
-correct type; type means integer,’floating peint, or alphanumeric. Also,
‘it regulates thevconversibn of the A's agde’s for the automated oéticns
via a call to CONVRT. . '

- RESTRICTIONS: The input and output_are transferred through the calling

sequence arguments and labeled comman:CHECKD.

"TAPES" USED: None

SPECIAL FEATURES: The F¢BTRAN‘V intrinsic function FLD is used for bit
manipulation. ' o e

OTHER SUBROUTINES USED: C@NVRT and ERRMES

CALLING SEQUENCE: TYPCHK(JUMP,IERR,J)

JUuMp indicates what type the word should be.

IERR tells subroutine ERRMES which error message.to pfint
if the word ié not of the type indicated by JUMP.

J is a pointer to the word type in array KF¥LEFX,

ERROR PROCEDURES: 1If a word is not‘ofrthe proper type control is

transferred to subroutine ERRMES to-print an error message and the.
logical flag CRDERR is set to true.

STORAGE REQUIRED:~-233 octal words = 155 decimal words. See Section 4.7.1.

LABELED COMMON: CHECKD




4,2.28 SUBROUTINE NAME: WRTDTA -

PROGRAMMING LANGUAGE: F@RTRAN

PURPOSE: This subroutine writes the program data "tape" in the format
required by INPUTT or INPUTG.

RESTRICTIONS: The data to be writtem on "rape" is found in the dynamic .

. storage array.

“TAPES" USED: Program datd "tape" LB3D

SPECIAL. FEATURES:

None

OTHER SUBROUTINES USED: None

CALLING SEQUENCE:

JUMP

ERROR PROCEDURES:

STORAGE REQUIRED:

WRIDTA(JUMPj’k

is an integer flag that indicateé which data block to

write and what format to use.

None

645 octal wordszZI decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET, DATA, 1@GIC, PLPGIC, PPINT, and TAPE



4.2.29 SUBROUTINE NAME: WRTPMT

" PROGRAMMING LANGUAGE: =F@RTRAN

PURPOSE: This subroutine writes the data that is needed for parameter

runs on the parameter runs "tape" and writes the dictionary “tape."

RESTRICTIONS: The information that is written on the "tapes" is found in

the dynamic storage array.

"TAPES" USED: Dictionary "tape" - . LUTL

Parameter runs "tape" LUT3

SPECTAL FEATURES: None

OTHER SUBROUTINES USED: None

CALLING SEQUENCE: - WRTPMT (JUMP)

JuMp is an integer flag that indicates to WRTPMT which set

of information to write.

ERROR PROCEDURES: None

. STORAGE REQUIRED: 401 octal words = 237 decimal words. See Section 4.7.1.

LABELED COMMON: BUCKET, DATA, L@GIC, PPINT, and TAPE.




4,2.30  SUBROUTINE NAME: WRTBLK

PROGRAMMING LANGUAGE: Assembly Language

PURPOSE: This subroutine writes the 507 word blocks contained in array

KBLK on the program FPRTRAN "tape."

RESTRICTIONS: None

"TAPES" USED: Program FRTRAN "tape" LB4P

SPECIAL FEATURES: None .

OTHER SUBROUTINES USED: None

-

CALLING SEQUENCE: WRTBLK

ERROR PROCEDURES: None

STORAGE REQUIRED: 14 octal words = 12 decimal words.

LABELED COMMON: CRDBLK
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4.3 LABELED C¢MMPN VARIABLES

The SINDA preprocessor uses nine labeled common blocks to pass
data and flags between the various subroutines. Labeled common names,

in alphabetical order, are:

BUCKET CHECKED CIMAGE
CRDBLK DATA FLAGS
LPGIC PLPGIC PPINT

Note that the UNIVAC 1108 version does not utilize blank common.
The two sections that follow give: 1) a map of the labeled common usage by

subroutine name and by overlay link; 2) a definition of the variables

used within each labeled common block; and 3) dynamic storage structure.

4.3.1 Labeled Common Map

The map below gives the labeled common name, a list of the over-

lay links that use it by link number and a list of the routines that use it.

" LABELED C@MM@N @VERLAY RPUTINE
NAME LINK NAMES _NAMES
BUCKET 0, 1, 2, 4, 5 ALPINT  C@DERD
DATARD  FINDRM
GENUK INCYRE

N@DEDA PREPR$
PSEUD@ QDATA
RELACT - SINDA4
SPLIT SQUEEZ
WRTDTA WRTPMT

CHECKD 1 DATARD  GENUK
NODEDA  QDATA
TYPCHK

CIMAGE 4 ALPINT  MXT@FN
SINDA4

CRDBLK 0, 3, & BLKCRD  GENLNK

MXT@FN PREPR{
PRESUB SINDA4
STFFB WRTBLK
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LABELED C@uMpN
NAME

DATA

FLAGS

LPGIC

PLGGIC

. P@INT

TAPE

$VERLAY

LINK NAMES

0, 1,2,3, 45

0, 1, 3, 4

0,1, 2, 4

o, ls 2, 3, 4,5

4 - 37

ROUTINE

NAMES
ALPINT C$DERD
DATARD ERRMES
GENLINK  GENUK
INC@RE NPDEDA
PREPR$  PRESUB
PSEUDY RELACT
SINDA4 SPLIT
WRTDTA WRTPMT

" DATARD N@DEDA
CSDERD 'DATARD
FINDRM INCPRE
PREPRy  PSEUD®
WRIDTA  WRTPMT
CPDERD DATARD
GENLNK  INCPRE
PREPR¢ SINDA4
WRTDTA
ALPINT CADERD
DATARD  FINDRM
GENUK INCORE
N@DEDA PREPR@
PSEUD@ QDATA
RELACT  SINDA4
SQUEEZ  WRTDTA
'WRTPMT
ALPINT BLKCRD
C@DERD DATARD

" ERRMES FINDRM
GENLNK INCPRE
PREPR{ PRESUB
PSEUD¢  SINDA4
SKIP SPLIT.
WRTDTA  WRTPMT



-

4.3.2 Definition of Labeled Common Variables

(1) Labeled common name BUCKET.

@

3

BUCKET is the dynamic storage array (see Section 4.3.3).

Labeled cdmmon name CHECKD

CHECKD is used to temporarily store and check the user's

“input data.

VARIABLE NAME

DESCRIPTION

TEMP (35)
or ITEMP

XGEN(35)
or IGEN

KFLFX(35) .

CRDERR

A temporary storage'array, which contains

the user's input data as read from the
data cards. ‘ '

A temporary storage array used to store a
copy of TEMP when the user is generating
data.

An indicator used to check the data array
which contains one of the following
numbers: ‘

floating point number

1=
0 = integer number
-1 = Hollerith word

A logical flag: Set true if and only if
an error was found on the data card now .
being processed. L

Labeled common name CIMAGE

CIMAGE is used to store and.manipulate Hollerith card images

for the ‘M' option.

VARIABLE NAME

DESCRIPTION

TIHPLL(80)

JHPLL(160)

The input card image, read under an 80Al
format.

The constructed card image, also an 80A1
format. : ’
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(4) Labeled common name CRDBLK

CRDBLK is used to comstruct the five generated F@RTIRAN

routines.

VARIABLE NAME DESCRIPTION

LSTART A logical flag that signals the start
of a new routine if set to true.

LECARD A logical flag that signals the end of
a routine. ”

LCgPY A logical flag that tells the program
to copy the card image (14A6) found in
IMAGE to the next available slot in KBLK,

NW Is a counter whose value is the next:
available word in KBLK.

KBLK(507) An array that contains F@RTRAN card
images of the generated routines.

IMAGE(14) An array that contains one card image to
be copied into KBLK.

{5) Labeled common name DATA

DATA is used to store the counters that indicate (to the
program) how many of each data'type'has been encountered.

In addition, it contains three error flags.

VARIABLE NAME DESCRIPTION

NND The number of diffﬁéion nodes.

NNA Thg number of arithﬁetic nodes.

NNB The number’of boundary nodes.

NNT The total number of nodes.

NGL The number of linear conductors.

NGR ‘The numberybf radiation conductoré-

NGT The total number of conductors.

NUC The number,of user constants.

NEC1 The number of added constants fioﬁ“;
automated options in the node data . -
block. ' ' '
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NEC2 -

NCT

LENA

 ERDATA

PRPGRAM

ENDRUN

LSEQL

LSEQ2

LYNG

The pumber of added constants from the
automated options in the conductor data
block.

The total number of constants.

The total number of words used in the array
data block.

The non-fatal error flag for the data
blocks. ERDATA # 0.0 means an error .
has -been found.

The non-fatal error flag for the'obéfa—
tions blocks. PRPGRAM # 0.0 indicates an
error condition.

The fatal error flag for the preprbcessor.
ENDRUN # 0.0 signals the program to terminate
immediately. :

The length of the first pseudo-compute,
sequence.

The length of the second pseudo-compute

- Sequence.

A logical flag set to true if the»uéer
is requesting the long pseudo-compute -
sequence.

Labeled common name FLAGS

FLAGS contains three.flags that are used te go to the proper

- VARIABLE NAME

_ block of coding in subroutine N@DEDA.

DESCRIPTION

LEAP

NONLIN

INDX -

Used with the GEN‘option.

Flags a set of multiply connected con- .
ductors as radiation, if set to true. -

Determines path when muitiply connected
conductors require more than one data
card.

Labeled common name L@GIC

L@GIC contains a number of logical flags and the flfty

fixed constants.
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VARIABLE NAME

LN@DE

LCHND

LCPNST

LARRAY
LPRINT
KBRNCH
FIXC(50)

IFIXC

KTPRNT

AYPRNT

GENERL

LQ

DESCRIPTION
Set to true if any node data was processed.

Set to true if any conductor data
was processed.

Set to true if any user constants were
processed

Set to true if any array data was processed.

Debug print flag, set to true if there is
an asterisk in columm 80 of the BCD 3
THERMAL/GENERAL card. .

An integer that spec1fies which data
block is being processed.

The array that contains the fixed
(control) constants.

Optional print flag for a list of relative
versus actual user constant numbers. Set
time if there is an asterisk in columm 80
of the BCD 3CPNSTANTS DATA card.. o

Optional print flag for a list of actual
array numbers versus FPRTRAN address. Set
true if there is an asterisk in column 80 .
of the BCD 3ARRAY DATA card.

Set true for a general problem.

Set true if any data was processed from the

source data block.

Labeled common name PLJGIC

PLPGIC contains a number of loglcal flags that are used in
conjunction with parameter rums.

VARTABLE NAME

DESCRIPTION

PARINT
PARFIN
PN@DE
PC@ND

PC@NST

Set true f6r initial parameters run.

Set true for final parameters run.

Set true if node data was processed.

Set true if cdndﬁétdr‘data was'proceésed.

Set true if user constants data was
processed.

4 - 41

X



PAPRAY Set true if array data was processed.
PTITLE Set true if a new title was input.
PCHGID Contains the alphanumeric word INITIAL
’ or FINAL to be used as the rum 1dentification
on '"tape' LB3D.
(9} Labeled common name P@INT

PEINT is used in conjunction with dynamic storage array
BUCKET. See Sectlou 4.3.3.

4.3.3. Dynamic Storage Structure

- .

Dynamic storage represents one of the techniques of maximizing

problem size with a compucer with finite core. In dynamic storage each
data set is placed sequentially into one array end-to-end. This
eliminates the'wasted core inherent with the traditional system of
dimensioning each variable at some fixed length. waever, the price
paid for the additional core is the extra time required to compute the
address of a variable.

The SINDA preprocassof’used three arrays to store and address
the data sets.‘ The data sets are. stored in an array named B, or IB, or BB.
This array resides in labeled common BUCKET. The iength at which B can be
dimensioned depends on the system that the computer facility uses, At
NASA MSC approximately 30,000 words are allocated to B. In addition, in-
‘labeled common PPINT there are two arrays named L@C and LEN, each
dimensioned at 20. L#¢C (I) contains the starting location in B for the

AIth data set and LEN (I) contains the 1ength of the Ith data set.

~ The 1nformatlon ‘below gives, in detail, the contents of the
dynamic storage array for each data block as it exists just after the data

block has. been processed.

(1) Node data block

data set 1l: -
bit 1, automated option flag
bit 2, Q from SPURCE DATA flag
bits 16-35, actual node numbef

b4 - 42
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2)

{3)

data set 2:

bits 0-35, temperature value
data set 3:
bits 0-35, capacitance value

data set &4:

bits 0-5 non~linear capacitance type

bit 6, literal array flag
| bits 7-20, actual array number
bit 21, literal constant flag
bits 22-35, actual coﬁstant number
data set 5: )
bits 0-35, literals encountered in 4.

Source data block

data set 2 (first word of group):

bits 0-5, source option type
bits 6-20, relative node number
bits 21~35, not used

data set 2 (second word of group): ’

bits 0-5, not used ,
bit 6, literal array flag
bits 7-20, 'actual array number
bit 21, literal constant flag
bits 22-35, actual constant‘humber
- data set 3: »
bits 0-35, literals encountered in 2

Conductor data block

data set 6:

bits 0-35, actual conduétor'nUmber'

data set 7:

bit O, melti coﬁnections flag

bit 1, radiation flag
bit 2, automated option flag
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bits 3-5, noet used'

bit 6, 1 way flag for NA
bits 7, 20, relative node number NA
bit 21 1 way flag for NB
bits 22-35, relative node number NB

data set 8:
bits 0-35, conductance value

data set 9: . -
bits 0-5, conductor option type

" bit 6, literal array flag

- bits 7-20, actual array numbér

bit 21, literal constant flag
bits 22-35, actual constant number

data set 10:
bits 0-35, literals encountered in 9

(4) Constants datza block

data set 11:

bits 0-35, actual constant number:

data set 12: ; o
bits 0-35, constant value

(5) Array data block

_ﬁata set 13:

bits 0-35, actual array‘number

data set 14:

bits 0-35, array length
daté set 15: ”

bits 0-35, array value
(6) Pseudo-compute sequences

data set 16 (lst pseudo-compute sequence) !

bit O, , last conductor flag
bit 1, automated capaditance flag
bit 2, automated conductance flag
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 bit 3, radiation conductance flag

bit 4, Q from source block flag

bits 5-20, relative conductor number

bit 21 1 way conductor flag

bits 22-35, relative adjoining node number

‘data set 17 (second pseudo-compute sequence):

bits 0-4, automated option type
bit 5, not used ‘
bits 6-21, FPRTRAN address for array
bit 22, not used '
i bits 23-35, relative constant number

-The bit numbering convention above conforms to the UNIVAC
standard notation, where each 36 bit word is numbered 0 through 35 from
left to right. Each of the 1 bit flags above is querried in the following
manner: O means NO, and 1 means YES. If the literal array flag or the
literal constant flag is set to' 1, then the bits immediately to the right
of the flag do not contain the acﬁual array or constant number. 'Instead;
they Contain a pointer to the next data set where the literal value is
stored. In those data sets that store information for the automated
options it is sometimes necessary to use more than one word per option.

When this is the case, the automated option type (bits 0-5) is set to O.
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4.4 SINDA "Tapes” and Their Formats

The SINDA program in its normal operating mode utilizes six
"tapes." Five of these "tapes" are assigned by the program and the re-
maining one contains the program; it is assigned via control cards. The
store and recall options require one additional "tape" each and the NASA
edit feature fequires two additional "tapes." The following paragraphs

contain information on the five normal SINDA "tapes."

4.4,1 LB3D —'Program Data "Tape"

This "tape is set up by the preprocessor (WRTDTA) and read
by INPUTT for a thermal problem, or INPUTG, for a genera; preblem, just

prior to performing the instructions of the execution block. The contents

of this unit are:
[¢D) Problem identification.
WRITE(LBBD)RUNID‘
(2) Title information (20 words).
WRITE(LB3D) (TITLE(I),I=1,20)
(3) The number of: diffusion nodes, arithmetic nodes, and total

nodes; followed by a temperature value for each node; then

- a capacitance value for each diffusion, if any.
WRITE(LB3D)NND, NNA, NNT, (T (1), I=1,NNT).
IF (NND.GT.0) WRITE(LB3D) (C(I), I=1, NND)

(4) The total number of conductors followed by a conductor value

for each one.
"~ WRITE(LB3D)NGT, (G(I),I=1,NGT)

(5) The total number of user constants are followed by the 50 control

constant values; -then the user constants values, if any.

WRITE(LB3D)NCT, (FIXC(I),I=1,50)
IF(NCT.GT.0)WRITE (LBJD) (K(I),I=1,NCT)

(6) The total number of arrays and the overall iength of the array
data; then the array values, if any.
WRITE(LB3D)NAT,LENA
IF (LENA.GT.O)WRITE(A(I),I=1,LENAj
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(7) The lengths of the first and second pseudo-compute sequences,
followed by the data for the first pseudo—-compute sequence;

then the data for the second pseudo-compute sequence, if any.

QRITE(LBSD)LSEQl,LSEQZ,(Pl(I),I=1,LéEQl)
IF(LSEQ2.GT.O0)WRITE(LB3D) (P2 (I),I=1,LSEQ2)

" Note that (3), (4), and (7) above apply only to a thermal problem.

c4.4.2 LB4AP - Program F¢RTRAN>"T@ge"

This "tape" is eépecially formatted in 507 word blocks as .
required by the FPRTRAN compiler.  Where:

WORD 1 on the first block of each routine contains the name -

of the routine.

VORD 2 contains the inteéer number of card images in the
block. '

WORDS 3 - 506 contain the card images

WORD 507 is set to +0 except on the last block of each

routine where it is set to -0.

4.4.3 INTERN - Preprocessor Scratch "Tape"

Generally INTERN is used to pass card images to subroutine
BLKCRD under a 14A6 format. ’

4.4.4 LUT1 ~ Dictionary "Tape"

This "tape" contains a list of the actual SINDA numbers in a
relative order. That is, the actual node number corresponding to the
kth relative node number is the kth item of the_hode number dictionary.

The format of this "tape' is:

(1) The total number of nodes, follbwed by an actual node number

for each node.
WRITE (LUT1)NNT, (NN(I),I=1,NNT)

(2) The total number of conductors, followed by the list of actual

conductor numbers.

WRITE (LUT1)NGT, (NG (I),I=1,NGT)
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4.4"5

3)

%)

1)

(2)

€))

%)

)

The number of user constants, the total number cf constants,

foliowed by a list of the actual constant numbers.
WRITE(LUTL)NUC,NCT, (NK(I),I=1,NCT)

The total number of arrays followed by a list of the actual
artay'nﬁmbers, then the total number ofﬁarrays followed by a
list of the length of each array.

WRITE(LUT1)NAT, (NA(I),I=1,NAT)
WRITE{LUT1)NAT, (LA(I), I=1,NAT)

LUT3 - Parameter Runs "'Tape"

This “tape" contains some data from the original problem. It
1s required by the initial parameters capabillty. The format
of "tape" LUT3 is:

The original title.
WRITE(LUT3) (TITLE(I),I=1,20)
A list of original temperature and capacitance values.

WRITE(LUTS)NND (T(1),I=1,NNT)
IF (NND.GT.Q)WRITE(LUT3) (C(I),I=1 NND)

A 1ist of the original- conductor values.
WRITE(LUT3) (G(I), I=1,NGT)
Lists of the original fixed and‘dser constants.

WRITE{LUT3)NUC, NCT, (FIXC(I), I=1,50)
IF (NCT.GT . 0)WRITE (LUT3) (K(I), I=1,NCT)

The original array values. °

WRITE(LUT3)NAT,LENA
IF (LENA.GT. U)VRITE(LUTB)(A(I), 1 LENA)
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4.5 Overlay Structure

The SINDA preprccessor has an overlay structure composed of a
main link (designated LINKO below) which is always in core and five sublinks ‘
(designated LINK1, LINK2, LINK3, LINK4, LINK5, and LINK6 below) which over-

lay one énother as they are brought into core.

LINKO
PREPRY
BLKCRD
FINDRM
SQUEEZ
STFFB
WRTBLK
1 -
e e T ] ! et
LINKL LINK2 LINK3 LINK4 LINKS LINK6
CADERD PSEUD® GENLNK PRESUB SPLIT EDIT
C@NVRT "PCS2 ~ | ALPINT SKIP
DATARD o | MXT@FN
ERRMES | SEARCH
GENUK - | SINDA4
INCORE L
N@DEDA
QDATA
RELACT
SETFMT
TYPCHK
WRTDTA
' WRTPMT

Note that the first subroutine listed above in each of the sub-
links serves as the driver for that sublink and it is also the subroutine
called from PREPR{.
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Atiother approach to overlay épecifiqation is to think of each

‘link as a functional unit, hence the graph below.
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4.6 Structure of Pseudo-Compute Sequences

4.6.1 Descriptions

The use and structure of the two pseudo~écmpute sequences
_generatéd by the SINDA pféprocessor appear to be rather coﬁfusing and
mysterious. The term "pseudo” itself leads to immediate interpretation
difficulties. Suppose that an element Gk between nodes i and j is to be
identified for the ith node; by specifying explicitly i,j, and k the
element is completely defined. On the other hand,‘SINDA explicitlyt
specifies j and k but i is implicit in the D@-L@P@PP; hence, the descfiption
pseudo-compute sequence (PCS) arisés. Confusion also arises from the lack
of informstion regarding the need for thé (PCS) and the difficultieé in
reading the packed information. In short, the PCS as used in SINDA is
simply two lists of relative nuﬁbers which are ordered in a specific
manner. The two lists of relative numbers form the heart of the PCS,
although other information pertinent'tb the computetion must also be

considered.

The PCS is necessary because the data as input by the user dces
not lend itself effiéiently to the'éomputational capabilities of FPRTRAN,
As a result, the pteprocessor‘scags the user input data and places the
relative numbers (FPRTRAN addresées) into. an érray in the ofder in which
the data will be used at a létet time by the user selected numerical

solution routine.

Packing of the data is a technique that conserves computer
storage by placing two or more pieces of information in one computer word.
This allows the user to execute a lafger problem thén the one that can
be accommodated if the traditional one computer word for each piece of
information approach. The penalty for this larger problem capability
is an increase in execution time required for the extraction of information

each time it is used.

4.6.2 Structure of PCS1

The first PCS, designated PCSl,ICOntains the following informétion:
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bic O . last G fer this nodé flag
bitc 1 automated C option flag ’
bit 2 automated G option flag
bit 3 radiation G flag
bit 4 Q from source data flag
“ bits 5-20 relative G nﬁmber
bit 21 1 way G flag
bits 22—35 relative'adjoining node number

The 36 bits of each computer word are numbered 0 through 35 from left to
| right.  All of the 1 bit flags are set such that 0 means NP and 1 means
YES. -

PCS1 is stored in an array named NSQl and is ordered by rela-
tive node number. That is, for relative node number 1 the conductor data
is scanned and each time a conductor connected to node number 1 is
encountered the PCS1 information is stored in NSQl. When all of the
conductor data has been_scannéd;'the 0 bit of the latest word of PCSl
information is set to-l1. This process is repeated for relative node
numbers 2,'3, etc., until all diffusion and arithmetic nodes have been
processed, PCsl will be formed as either long or short as specified by
the user on the BCD 3THERMAL card. This option is applied to diffusion
nodes only since arithmetic nodes érefalways formed under the long option.
The difference between the long PCS and the short PCS is that in the |
long PCS, each conductor will be listed twice, whereas in the short PCS
each conductor will be listed once. this assumes the conductor connects
two diffusion nodes. If one or both‘of.the nodes is arithmetic, then
the conductor will be listed twice, and if one of the nodes is a boundary
the conductor will only be listed once. For example, given conductor
- number k which connects diffusion nodes i to j, where i < j. The long
PCS would contain the k, j information'for the proce§sing of node i, and
the k,i information for the processing of node j; whereas, the short
PCS would only contain the k,j information. The short PCS thus has the
advantage of requiring less computer'stérage than the long PCS, but a
block iterative method (refer to Section 5.2.2) must be used; in general,
. the short PCS requires more iterations to converge than the successive
point iterative_(refer_to Section 5.2;2)’method which requires the long
PCS.
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4.6.3 Structure of PCS2

The second PCS is designated PCS2. The following information

is stored whenever bit 1, bit 2, or bit 4 of PCSl is set to ome..

bits 04 automated bptign'code

bit 5 rot used - |

bits 6-21 FPRTRAN address of the array or rgiati&é
constant number.

bit 22 not used

bits 23-35 relative constant number

If the automated option is a doublet type, like DIV, and therefore requires
two words to storeythé information, the automated option code on the
second word is set to zero. In the event that more than one cf the

flag bits (biﬁs 1, 2, or 4) of PCS1 is set to one, then the following
order is imposed on PCS2: the capacitance information is stored first,

the source block information second and finally the conductor informatiom.

The PCS2 information is stored in array named NSQ2. This
array is the same under the iong PCS1 or the short PCS1l since autcmated

conductors are only flagged om their first encounter.

4,7 Other Information

This section contains miscellaneous infocrmation that may be of

interest to the user.

4.7.1 Subroutine Lengths

The storage required by a particular routine will vary depending
6n the type of computer and the system being used. The routine lengths
given in Section 4.2 are based on compiler listings made on 23 January 1971
at Jacobi Computation Center.* The machine is a UNIVAC 1108 with a highly
modified system. The numbers represent the sum of the computer storage for

computer instructions, constants, and simple variabies.

4£.7.2 Maximnm‘Thermal Problem Size and Maximum Data Value Size

A short formula for estimating the maximum thermal problem size
that can be run on SINDA, and a list of the maximum size of the various
data values is given below.

* Now called Computation and Systems Corporation, Los Angeles, California.
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Estimation of Maximunm Problem Size

NNT + 3*NGT + NCT + 4*NA@ < LENBKT

where,
NNT is the totél number of nodes.
NGT is the total numbervof coﬁﬁﬁctors.
NCT is the total number of constants (user

constants'plus literals from automated optionms).
NAG is the number of automated options specified.

-LENBKT is the length of the dynamic storage array as
set in routine PREPR{.

Maximum Size of Data Values

‘Actual node number

Core storége 233—1

Print out 995,999
Relative node number

Core storage 16,383
Témperature

Core storage . 10;8
Capacitance »

Core Storage + 103‘8
Relative conductor number

Core storage 235-1
Actual user constants number o

Core storage 32,767

Automated options 16,383
Relative user constants number |

Core storage 32,767

Automated options 8,191

4 - 54



3

User constant values

35,

Integer <2 _
Floating point * 1038 '
Alphanumeric .6 characters
Actual array number
Core storage 235—1
Automated optioms 16,383
Print out - 99,999
Relative array number
. Core storage 235-1
Automated options 65,535
Print out 99,999
Array values
Integer S+ 2331
Floating point + 1038
Alphanumeric 6 characters

Note that some of the maxima, such as the relative conductor
number of 235—1, are strictly academic since the dynamic storagé array

is considerably smaller than the indicated maximum data value size.
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5. REVIEW OF LUMPED PARAMETER EGUATIONS AND BASIC NUMERICAL SOLUTIONS

The use of SINDA as mentioned in a previous section is based on
2 lumped parameter representation_of a‘thSical sYstem.7- _Thns SINDA solves
numerically a set of ordinary (in general nonlinear) differential equations
that represent the transient behavior of a lumped“parameterisystem or a
set of nonlinear algebfaic eqﬁatidnS‘répresenting steady state conditions.
Numerous numerical sclution techniques;are'réported in literaturé; a few

82k

of these are listed in the Reference Section. These numerical methods

are based on finite difference algorithms as opposed to finite element

methods which have received considerable attention recently.®~ %

For
problems that are generally encountered in spacecraft thermal design, use
of thefinite element method appears to be inappropriate because of the |
nonlinearity presented with radiationm heat transfer and because of

complex geometric configurations.

Variations of the basic finite difference algorithms are numerous
because no single numerical solution technique is optimum for all the
endless types of thermal problems that can be encountered. Furthermore,
because of the nonlinearity of the problems, a specific set of criterions
to indicate solution accuracy and'stability is not available and dqes not
appear to be forthcoming. As a result, the user is placed in a rather
awkward and confﬁsed position of not knowing which subroutine to use if a
choice is available. Some thermal analyzer-type computer programs alldw
no choice, as a result, user decision is not necessary. SINDA represents
a computer program at the other-extremé of user decision flexibility by

providing a number of numerical solution methods.

The intent of this Section 5 is to review and formulate the basic
numerical solution methods with the presentation (from an engineering stand-
point) of the characteristics of each SINDA numerical solution routine
deferred to Section 6. In addition to place the use of SINDA in a proper
perspective relative to accurate temperature prediction of a physical A
system, difficulties associated with 1umped—parametef representation are

diséussed here.



5.3 Trunned Parameter Representation

Reduction of a disiriﬁutive (physicai) system to a lumped system
which can be represented as an equivalent thermal network is a rather.impor-
tant phase of thermal analysis. From a temperature acéuracy standpoint
Iumpiug (or nodalization) of the physical system may be far more impcrtant
than a numerical solution technique that is used in a computer program.' The
latter is often given undue attention with apparent ignorance of other error
sources which may be far more important. A general discussion on lumped para-
meter representation is not intended for presentation here since the subject
material is extensively covered in techhical'literature, but it is convenient

for continuity to indicate basic considerations.

For siﬁple geometries and linear problems, it is rather

straightforward to solve the partial differential equations of the type,

_g_r_ = ov?T + q (5.1-1)
t
where, o = thermal diffusivity (k/C)

[ ]
i

= temperature

Q = source
2 2 :
Vz = é——-+-—§— (two dimensional)
2 2
ox oy

Numerous analytical solutions of (5.1-1) for different types of
boundary conditions and geometries are availablel?» ¥ Finite difference
algorithms formed directly from the partial differential equations are

12,1% fThese finite difference

also abundantly reported in literature.
formulations were generally developed for well-defined geometries and
symmetrical discretization. For these problems, the so-called nodal
connections or resistances are immediately available and, in general,
automatically generated by the computer program. Thus, the need for a
lumped parameter representation does not exist. For these types of
prbblems, inaccuracies due to truncation and solution stability are

specifically established. .

For complex geometries and nonlinear problems such as those that
include thermal radiation exchange, analytical solutions of thermal

32 ,3%

problems are limited. As a result, it is a common practice because

of practical considerations to nodalize a physical system directly with-

5-2



out undue consideration of inaccuracies. Thus, a user merely represents the

heat flow between two connecting nodes by using the basic network building
block, '

94 = (T; - Tj)/Rij‘ : {5.1-2)
where, Rij represents an effective resistance be;ween adijoining nodes
1 and j. ’

It should be particularly noted here that 3INDA employs the
concept of conductance in lieu of resistance which is common with most

network-type computer programs. Thus the heat flow is represented as:

a5 = Gij(Ti - T&) (5.1-3)
where, Gij is the conductance between node i and node j.

The proper value of Gij (or R j)for an arbitrary nodalization
is (and shculd be) of concern to the user but because of the multitude of
variables that must be considered, any discﬁssion here would be incomplete.
An excellent article on asymmetrical finite difference networks is _
presented in Reference 35.

5.1.1 Some Thoughts on Lumped Parameter Errors

Reduction of a physical system to a topological model consisting
of a network with resistors and capacitors requires considerable engineering
judgment. More often than not, nodal size of a model is governed by budget
and schedule constraints. As a result, the discrete areas larger than
desired are often used. This does not necessarily mean, however, that the
use of a large number of ncdes will always yield realistic results since the

uncertainties of the input parameters can be appreciable?6

Spatial truncation errors are controlled by selecting the grid size
so that nonlinear temperature distributions lie within required accuracy by
linear interpolation between nodal points, and that variation of temperature-
dependent properties over the volume of each node is within required limits
of the average values determined for the nodal point. The assumption of
linear temperature dlstrlbution assumed for the lumped-parameter equatlons
(equation 5.1-6) leads to a spatial truncation error of the order O(Ax ) only
if all nodes are symetrically located.?’ 1If a non-uniform grid is used, the
accuracy of computation is only O(Ax).’ Spatial truncation errors are thus

inherent in the mathematical model and beyond user control once inputted into
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SINDA. For a two—dimen51onal problem with symmetrical grlds, the spatial

truncatlon error can be expressed for typical explicit and implicir methcdc

‘ \)\88, 12 427

(Ax) 8 T - (Ay) 8 T + O(Axé) (5.1-4)
12 4 12 4

ax dy
Temperature distribution other than linear can also be farmulated§3° however,
most thermal analyzer—typé computer programs snch as TRUMP®® and including
SINDA are based on the linear assumption. .

E = -~

' Time truncation errors are directly depemdent upon the time-step
since the error for the typical explicit and implicit method is,
At 3%t
2 at2

Normally the time step is dependent upon a particular criterion chosen by

E = - (501-5)

the user. A more detailed discussion on user control of the time step .
will be given for each numerical solution routine within the SINDA sub-
routine library.3’“

Another approximation error which is due to discretizing is the
assumption of constant radiosity for the discrete areas. Inaccuracies can
‘] be expected to affect the level and distribution of temperature. The
" analysis of thermal radiation exchange has received COnéiderable'attention

in recent years because of its importance in spacecraft thermal design.‘ko’52
The influence of non-uniform local heat flux cn overall heat transfer
between a gray differential area parallel to a gray infinite plane is
examined in Reference 43; the assumption of wniform local heat flux appears
to be reasonable for this geometry and for the evaluation of the overall
heat flux calculations. A metﬁod of analysis suitable for engineering
applications.is developed in Reference 50 for computing local radiant flux-
and local temperature of opaque surfaces in a space environment. A study
evaluating the validity of commonly used simplified methods of radiant heat
transfer analysis is reported in Reference 48. A study directed at
improving the understanding and prediction of orbiting spacecraft thermal
performance is presented in References 46 and 49. A method presented in
Reference 51 provides a means of evaluating the uncertainties associated
with thermalyradiation exchange. For an excellent status review (as of
1969) on radiation exchange between surfaces and in enclosures, the reader

‘should consult Reference 52.



The above discussion merely serves to indicate that considerable
care must be given when nodalizing a physical system and that the numerical
evaluation of the finite difference équations must be considered from the
total tewmperature error context. This means'that user attention to a given.

numerical solution must be placed in a proper perspéctive.

5.1.2 Lumped~Parameter Equations

Using the network building block as éxpressed by equation (5.1-3)
the 1umped parameter system is identified as a set of ordinary non—-linear

differential equations by taking a heat balance as an ith node,

4T, [ 123 ( 5 R o (o T4)] 5
—_—==1q + a,, (T, - T.) + ob, . (T, - T, (5.1-6)
dt Ci i 3=1 ij * ] i j=1 2 5 B | i

i=1,2,...,N (number cf variable temperatures

Tj-= constant, N < j < p

where, Ci "= the ith_nbdal éapaqity which may be a function of
temperature
q; = the heat into node i and may be a function of time and

temperature (impressed)

aij = the conduction coefficient between nodes i and j; it
may be a function of time and temperature
bij = the radiation coefficient between nodes i and j; it

may be a function of time and temperature

0 = Stefan-~Boltzmann constant

Cogfficients aij and bij are SINDA input quantities with the
temperature factor of equation (5.1~6) calculated internally by the program.
Both aij and bij may bg variables.,_Conductance updating is a subject for
discussion in a later paragraph. The user requirement to input the
coefficients,'aij and bij’ provides‘conéiderapie pfogram flexibility, but
at the same time user generation of these input quantities presents, in
some Instances, rafherrdifficult éngineering judgment decisions.

Radiation coefficient bij is, in essence, a radiation inter-

8 ~55

change factor, ¢, (also known as script F) between nodes i and j.

ij?
Generation of this quantity analytically can be quite difficult and

inaccurate. A number of methods and computer programs (see, for example,
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Reference 56) are available for evaluating the shape factors which
represent'an important part of determining script F. A direct generation
df séript F is normally through the use of the Monte Carlo tééhnidﬁe,“g
but a recent development utilizes a matrix formulation for determining the
script F in an enclosure containing surfaces with afbitrary eﬁissi6ﬁ'and

57,58

reflection characteristics. An experimental technique is reported -

in Reference 59.

5.2 - ‘ﬁasic Finite Difference Formulations

The various numerical solution techniques differ in the finite
difference formulations for the time-derivative (refer to equation 5.1-6);
since the thermdl equation is of the parabolic type, the transient heat
transfer problems are of the initial value type. This means that at some
time point,-t = nAt (n is the number of time steps, At) all values of T,
are known. Thus,

dTi n 1
= —d -
RS T -t (5.2-1)
n,ntl
i=1,2,.0.,N
where ¢t represents the time interval between t = nAt and t = (n+l)At

o+l

It is apparent that the selection of the proper value to (dTi,ﬁ/dt)tn,n+1
cannot be explicit and its selection identifies one numerical method from
another. Although many finite difference formulations of the parabolic
differential eqﬁation are aﬁailable, two general classifications are

) commoﬁly denoted as explicit or implicit. These numerical methods are
well-documented in literature; the reader should refer to Reférgncelz

for a comprehensive discussion on various finite difference approximations.
Explicit methods also discussed in References 14, 17, 19 and 20, among

6thers,;are step~by-step in time and equationms.
Explicit methods include:
(1) Forward-difference explicit approximationl?s M

This is an Euler méthbd that computes tamperatures in a
step-by-step fashion. The requirement of stabilit&
places an upper limit on the time increment. SiNDA
subroutines CNFRWD, CNFRDL and CﬁFAST fall withiﬁ this
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category. CNFAST is a modified version of CNFRWD which
allows the user to specify the minimum time step to be

taken. Refer to Sections 6.3.1 and 6.3.2 for details.

(2) Dufort~Frankel approximation®> 12,17

The Dufort and Frankel finite difference formulation is a
three level formula that appearsvto be unconditionally
stable. SINDA subroutine CNDUFU uses the_Dufbrthrankel

finite difference algorithm (refer to Section 6.3.4 for a

detailed discussion).

(3) Exponential approximation '> 17

The exponential approximation is found by integrating the

heat balance equations after making linear and constant
coefficient assumpﬁions. This method is unconditionally

stable for linear systems but may be unstable for scme

types df nonlinear probiems. SINDA subroutine CNEXPN

employs this method and is discussed at length in Section §.3.3.

(4) Alternating direction appreximations'’

This technique employs two formulations, one on odd time
levels and the other on even time levels and is uncondi-

tionally stable.

The implicit finite difference formulations require a simultaneocus
computational procedure. In addition to Reference 12, implicit methods
are aiso discussed in References 8, 10, 17, and 20, among others. Implicit

methods include:

(1) Backward difference implicit approx_:i.mation12

The backward difference weights only the flux terms at

t = (n+l)At.  As a result, the method is stable for éll
values of At. - SINDA subroutine CNBACK employs this method
and is detailed in Section 6.4.1.

(2) Crank-Nicolson approximation®

The Crank-Nicolson method uses the arithmetic average of

the heat flux at the two time levels, t = nAt and
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t = (n+l)At. The method is ﬁnconditionally stable. SINDA
CNFWBK uses this method and is discussed in Section 6.4.2.

Steady state analysis also requires an implicit method of
solution. SINDA steady state subroutines are called CINDSS, CINDSL and
CINDSM which are detailed in Sections 6.5.1, 6.5.2, and 6.5.3.

5.2.1 Forward Finite Difference Explicit{MEthnd

By replacing the first derivative of temperature with respect to
time, dT/dt, with the forward first differemce quotient, equation (5.1-6)

becomes,
(T -T, ). P p
i,nt+l i,n"" _ _ - _ ok
€ At 93 jzl %13 (Tj,n 1= )+ jE by (j,n Ti,n) G.2-1)

t = nAt
i=1,2’.--’n

= constant, N < j < p ‘

T
Jon
where, the second subscript on T represents the time level such that

T, 5= Ty (@AR)

Equation (5.1-6) is :epresented in the form expressed by equation
(5.1-3) by lietting,

Gij = aij + obij ('ri + T§)(Ti + Tj) (5.2-2)

It is interesting to note that the finite difference form of (5.1-6) (and

. thus 5,2-1) represents a second central-difference quotient of VZT (refer to
(5 . 1"‘1) ° .

The computational procedure for the forward difference formulation
1s rather straightforward since only a éingle unknown temperature at each
‘time step, T = nAt for each<equatibn is present. Note that the averaging

of dTi/dt) assigns a weighting factor to the heat flux terms only (terms on
the right side of equation (5.1-6) at t = nAt). Along with the computational
gimplicity, however, is the stability constraint which places an upper

limit on the time increment, At, that can be used in the numerical pro-

cedure. The stability criterion for the explicit finite difference method
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is (for the most limiting node),'? 1*

P
de<C/Z G (5.2-3)
0

i= 1’2’.'.’N

A modified stabilit& criterion that allows for a larger time step
which results in a conditionally stable temperature for the most limiting
node is reported in Reference 23. Since the stability criterioh will
govern the maximum time step that can be used, it is thus particularly
important that a user gives some attention to those factors that compose

the condition of stability when nodalizing a physical system.

- In the discussion'presented S0 faf, arithmetic nodes (nodes with
' no heat capacity) have not been mentioned. Normally, the computational

procedure treats arithmetic nodes separately from the diffusion nodes;

arithmetic~-node temperatures are solved implicitly. Detailed discussion on
the general procedure will be presented in a later paragraph as well as in

Section 6 which discusses the various SINDA numerical solution routines.

5.2.2 Implicit Finite Difference Method

The implicit difference equations can be constructed for heat

transfer problems in many ways (see, for example, References 12 and 20).

Replacement of equation (5.1-6) with the backward time difference

yields,
¢, Samtr " Tin) £ % e Y+ 5 ob T
i At 9 j=1 ij- T j,nt+l ,n+1 j=1 o ij (¥j,n+1 i, nﬁl)
i = 1’2,..0,N
Tj,u+l= constant, N< j < p

‘Ti,n = Ti (nAt)

The computational procedure for the backward difference formula-
tion must necessarily be re-iterative because of the need to solve a set of

simultaneous non-linear equatlons.

In view of the importance of iteration techniques (such as method of
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successive approximation), it may be of interest to formulate equation (5.2-4)
into an interative form. If we let C,/At = E:, use equation (5.2-2) in equa-
tion (5.2-4) and solve the resultant expression for T o+’ thlS yields the

recurrent equation for a given time increment, At, and time-step, n,

L
1kTi,k+j§1 i3,k T30 F Y,k |
1,00 . > (5.2-5)
C I G..
TiLk j=1 ij,k
i = 1’2,60"N
where, Ei,k = ci,k/At
2 2
4:;“’k _aij,k + Gbij,k (Tj,k + Ti’k) (Tj,k + Ti,k) {(5.2-6)

fi

constant, N< j <p

]

T

ik
k = kth iteration (note that C, 1K ql 0 24 and bij are shown

to be updated every iteratlon, SINDA routines update these

quantities once each time~step)

The iterative pattern is initiated by éséuming "old" temperatures
(Ti’k_and Tj,k) on the right'sidn of egquation (5.2-5) to evaluate z "new"
set of temperatures (T kHl) on the left side of the equation (5.2-5);
thls single set of calculatloqs represents an iteration. By replacing all
of the "old" temperatures (Ti ) on the right side of equation (5.2-5)
with the just calculated "nEW’ set of temperatures (T k+1)’ a second
iteration can be made. The iteration procedure is contlnued until a
termination criterion such as the number of iterations or the maximum
absolute difference between Ti,k and‘ri,k+l is less than some prespecified
value has-been satisfied, It should be moted that Gij’ Ci and 9, ape
shown to be updated every iteration. This iterative process is termed
"block" iteration since the "old" temperatures on the right side are
replaced in a "block" (a set of temperatures) fashion with the "mew"

temperatures.

Another iterative technique is to utilize on the right side of
equation (5.2-5) each '"new" temperature as soon as it is calculated. This
iterative method is termed "successive point" iteration and appears to

yield solutions about 25% faster than the "block" iteration method.

Equation (5.2~5) can be expressed in a "successive point" form.

as follows:
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. i p
C,. T .+ I G.. T, + I G T. + q.
r - _ ik "i,k =1 ij,k "§,ktl i=i41 ij,k i,k ql,k
i,k+1 - P -
C.+ L G
1% 2 Bk
2
= Vo
vhere,  Ggix = %35,k Pige Te T Bye ¥ T

k = kth iteration (note that E; , and b,, are shown to

,k 44,k 244 ij

updated every iteration)

. The iterative method as used in SINDA follows a fixed, pre-~
determined sequence of operations in contrast with a relaxation procedure
which is also one of successive approximations but is not processed out in
a predetermined sequence{ The relaxation procedure seeks and operates on
the node with the maximum temperature difference between the "old" and _
the "new." ©Prom a programming standpoint, the search operation requires.

as much computational time as the temperature calculation itself.

5.2.3 Steady State Method

Standard steady state equaticns follows directly from equation
(5.2-5) for block iteration or from equation (5.2-7) for successive point
iteration by letting E; = 0 1in these equations. The comments made in

Section 5.2.2 are equally applicable here.

5.2.4 Some Comments

The finite difference expressions presented in this Section 5.2

represent standard formulations and thus do not show computational tech-

(5.2-7

be

‘niques and artifices which are used, some more or some less, in all programs.

SINDA numerical solution routines contain many computational features (many

original with J. D. Gaski) which enhance problem solution., The various com-.

putational aspects of the numerical solution methods as used in the SINDA

routines are discussed in rather lengthy detail in Section 6.
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6. SINDA NUMERICAL SCLUTION ROUTINES

6.1 Objective and Presentation Format

SINDA has available to the user a number of numerical solution

" routines which employ various numerical methods. A brief description of

these routines with the required SINDA input quantities and format are
contained in the SINDA users manual;®s*a general revieﬁ of numerical methods
was presented in Section 5. Unfortunately, the brief description is not
sufficient for a casual SINDA user to make a selection decision from among
several routines that are available and for a serious user to fully under-
stand the computational procedure aé well as to understand the role of the

various control constants that are employed in each routine.

It is the intent of this section to fill wherever possibleyand
practical the description void that presently exists with the numerical
solution routines by detailing the characterisitcs of each. It is not the
intent here to provide sufficient detailed information for a user to make
modifications and/or additions to the existing subprograms, but rather to
provide information that will aid the user in assessing the various

numerical solution routines and in evaluating the numerical results.

Each of the numerical solution routines is detailed from a o
theoretical as well as from a computational sténdpoint. Control constants
and their role are described and indicated in a step-by~step verbal flow
computational procedure. Details of many of the numerous computational
checks have purposely been omitted because of the complex interactions.
Minuteidetails of each.routine can be obtained only from the individual
computer listings; a compﬁte: listing of each of the SINDA numerical
solution routines is presented in Appendices A, B and C. General computa~
tional procedure an& features that apply to most, if not all of the SINDA
numerical solution routines are assembled in a single section (6.2) in
order to eliminate undue repetition. The description of each routine is
heavily dependent upon, and coupled to, the general description of
Section 6.2. The routines have been categorized as steady state or
transient with- the latter subcategorized as explicit or implicit in order

to allow for an orderly presentation as well as to simplify future additioms.



6.2 General Computational Procedurevand Features

' Each of the SINDA numerical solution réutines employs a particular
finite difference approximation of the lumped parameter heat balance equa-
tions. In spite of the uniqueness of each routine, portions of the computa-
tibnal procedure used in each are similar. Also, many of the routines have
identical features such as the acceleration of convergence and the use of
control constants. As a result, it is convenient to place in this section
repetitiods material. In some instances material presented here is repeated

in the discussion of a particular numerical solution routine.

6.2.1 Order'of Computation

It was reported iﬁ Section 3;5 that the order of computation depends
on the sequence of subroutine calls placed in the EXECUTI@N block by the
program user. No other operations block is performed unless called upon
by the user either directly by name or indirectly from subroutines’which,
internally call upon them. Numerical solution subroutines iﬁternally call
upon operations blocks VARTABLES 1, VARIABLES 2, and @UTPUT CALLS. The
‘internal order of computation for these numerical solution routines is
similar with the primary differeﬁce betwécn one routine and another being
the finite difference approximation employed in a partlcular routine. A
flow diagram indicating the general order of computation for the numerical

solution routines is depicted in Figure 6.2-1,

6.2.1.1 Finite Difference Algorithm

Although each of the SINDA numerical solution routines employs-a
particular finite difference approximation which is detailed for each
numerical solution routine, the computational pattern is similar. - Within
the box depicted as in Figure 6.2-1, solution of the finite
difference algorithm occurs. The computational sequence for transient
solutions follows one of two patterns: ‘(1) one for explicit finite
difference methods; and (2) one for implicit finite difference methods;
steady state solutions follow closely the implicit pattern. Both numerical
flow pictures are depicted in Figure 6.2—2; details within the flow pictures
are different for each routine and are described separately under the indi-

vidual SINDA numerical solution routines (refer to Sections 6.3 - 6.5).



OPERATION.

CTS

[_E;I_J | VARBL2 |
LMrc |

DESCRIPTION

Calculate time step
Variables 1 operation

Solve finite difference
algorithm

Variables 2 operations
Output calls operations
Modify time control

Erase iteration

Check

&

DD > <>

P

Reverse direction if
Backup nonzero

Relaxation criteria not
not met e

Time or temp change
too large

Backup nonzero
Not time to print

Problem stop time
not reached

Implicit routines,
iteration loops

Implicit routines,
once per time-step loop

Figure (6.2-1) General Order of Computation

for Numerical Solution Routines
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EXPLICIT METHOD |

IMPLICIT METHCD

g

$4 Each Time Step

o

— ¥

'Diffﬁsioﬁ‘Nodes

% Update properties each time-
step Ci’;qi and Gy
(diffusion-diffusion,
diffusion-arithmetic).

Solve explicit difference

algorithm for diffusion
nod . .
e temperatures, Tl,n+l

¥

Diffusion Nodes

* Update properties once each
time-step C., q4 and Gy
(diffusion—éiffusion,
diffusion—arithmetic).

Iterate NLO@P-times, update
Gy 5 (radiation) and solve
implicit difference algorithm

for diffusion-node temperatures
i

Ti,n+l' ’ : !

!

-

Arithmetic Nodes

arithmetic).

Update properties once each time-
step q4 and G, (arithmetic-

Iterate NL@@P-times, update Gij
(radiation) and solve steady

state algorithm for arithmetic-
node temperatures, T

i,n+l”

|

* TFor CINDA -3G users, it should be noted that the updating of properties occurs
within the numerical solution routine after VARIABLES 1 call.

CINDA-3G

evaluates the variable properties before VARIABLES 1 call.

Figure 6.2-2.

Numerical Computational Pattern for Explicit

and Finite Difference Algorithms

.



6.2.1.2 Updating of Optiomally Specified Properties

épticnally specified properties are defined here as those items
which result in pointers being set in the second pseudo compute,sequenée
(refer to Section 3.3.4). The'term optional refers to mnemonic optioms that

are available for different tvpes of variable properties.af“

The properties

are updated in all SINDA numerical solution routines the same way. This definition
1s used here in lieu of stating'tﬁat optionally specified properties are time
and/ox temperaturé varying properties since source dataz may be specified to

be constant. The pointers are set by one or more of the following user input

quantities:

(1) All capacitances, Ci’ spécified as £(T) or £(t,T) in NODE DATA
BLOCK:

(2) All data, 4y entered in the SOURCE DATA BLOCK:

3 All'coefficients, Gk’ specified as £(T) or f(t,T) in CONDUCTOR
DATA BLOCK. It should be noted here that the term ccefficient as

used here requires amplification. The conductance, G,

ij

, may be

for conduction or fcr radiation; that is,

G,. =G, _=a

13 X 1 (for conduction conductance)

2 . )
Gij = Gbij (Ti + T?)(Ti + Tj) (for radiation conductance)

. ‘
6, (ri + T + 1)

Thus, note that the calculated conduction conductance Gij is
identical to the updated Gk’ whereas for the calculated radiation

conductance only Gbij is equiwvalent to the ﬁpdated Gk.

The type of optional properties is identified by the integer stored
in the first six bits of the second pseudo compute sequence which indicates
to the program which option is in effect. Optional property types are listed
and described for the three categories of input quantities in Table 6.2-1
for capacitance, Table 6.2-2 for impressed source, and Table 6.2-3 for

coefficients with the definition of symbols listed in Table 6.2-4.

6.2.2 Operations Blocks

In a previous paragraph, it was mentioned that the sequence of

subroutine calls placed in the EXECUTION block by the user determines the
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“

TABLE 6.2-1  OPTIONALLY

Option Type
SIV 1
DIV 2
DIV 3
DIV 4
SPV 5
DFV 6
DPV 7
DPV 8
BIV 9

Notation: Refer to Table

TABLE 6.2-2
Option Iype
blank 1
SIV 2
SIT 3
DIT 4
DIT 5
DIT 6
DTV 7
DIV 8
DTV 9

93

Notation: Refer to Table

SPECIFIED CAPACITANCE EXPRESSIONS -

Eggression
= i'
FatT))
— i.v i,
= FL(AJ:T,) + F2(A:T,)
= F1(L) + F2 (AlzTi)
- Fl(Ai:Ti) + F2(L)
= D,
F(AP:T,)
- Poen y | p.
FL(A0:T,) + F2 (AD:T,)
= F1(L) + F2 (Ap:Ti)

= Fl(Ap:Ti) + F2(L)

"

b
F(a ‘Ti’ tm)

6-2-4'

OPTIONALLY SPECIFIED IMPRESSED SOURCE EXPRESSIONS

Expression

=qy + F
i

=q, + F(AT:T)
= q, + Fatit )

93 *m
— i. il
=q, + Fl(Al.tm) + F2 (Az.‘tm)
= q, + F1(L) + F2(A1:tm)

= q, + F1(a're ) + F2(1)

= 1, i,
= q; + FL(Aj:e ) + F2(8,:T,)

= q. + F1(L) + F2(A1:Ti)

-— i. -
= q  + FL(a":c ) + F2(L)



Table 6.2-3.

Mnemonic

Options

S1v

- SIV

DIv

DIV

DIV

SPV

SEV

DPV

DRV

DpV

BIV

SIV

SPV

(conduction)

(radiation)

(conduction)

(radiétidn)
{conduction)

(radiation)

{conduction)

(radiation) -

(conduction)

’(rédiation)

(conduction)

(radiation)

Notation: Refer to Table 6.2—4; note G,

Optionaily Specified Coefficient Expressions
- for Conduction and Radiation

( i

1.0/11.0/F1(al:7,) + 1.0/F2(83:T)]

2773

1.0/[1.0/FL(L) + l.O/FZ(Ai:Tj)]

1.,0/[1.0'/F1(A1:Ti)' + 1.0/F2(L)]

-1.0/[1.0/F1(A11’:tri) + 1_.0/F2(A§:Tj)]

1.0/[1.0/F1(L) + 1.0/F2(AP:T,)1

377

1.0/[1.0/F1 (Ap:Ti) + 1.0/F2(L)]

Type  Expression
1 ¢ = F@4hT)
2 ¢ =F@AhI)
3 g =
6 = [FLALIT,)][F2(A5:T,)]
L g =
c]; = [FLOIF2(ANT)]
5 ¢ =
G, = [Fl(Ai:Ti)j[Fz(L)]
6 ¢, = F(A?:Tm)’
7 G, = F(aP:T)
8 &=
6= [FL(aP:T)][F2 (a5:1,)]
9 ¢ =
¢, = [FL@IF2(AP:1)]
0 %T |
6, = [F1(aP:T i)] [F2 (;)]
11 6, %'F(A_]’):‘.rm,. t)
2 - F,(Ai:yrj) -
13 G = F(Apzij)

6 =7

i

ob

aij

- (fbr radiatidn)~
i}

(for conduction)

- e



" Table 6.2-4. Definition of Symbols for Tables 6.2-1 -- 6.2-3

Symbols

C,
i

F, F1, F2

€, (-"'ai:l )

Gk (=0b_.)

ij
.
93
At

t
in

T
m
i
(A .tm)
i,
{A .Ti)

b
Aa7:T, t)

b
@t , t)

Definition

Capacitance of ith node.

Multiflying factors;‘either user constants or literal

Conduction coefficient.

Radiation coefficient.

A literal multiplying factor,

Heat load into the ith node. " (impressed)

Time;étep

Mean time, (TIMEg + TIMEN)/2.0

Mea? temperature, (Ti + Tj)/2.0

Interpolated value of array A using t, as the independent variable.

Interpolated value of array A using T, as the independent variable.

i

Interpolated value of the bivariate array A using T and t as
independent variables.

Interpolated value of the blvariate array A using T and t as
independent variables.

Mhémonic Options

BIV
DIT
DIV
DPV
DIV
SIT
SIV
SPV

Subscripts

§ivaria£e Interpolation Variable
Double Interpolation with Time as variable

Double Interpolation Variable
Double Polynomial Variable
Double interpolation with Time and Temperature as Variables

Single Interpolation with Time as variable

Single Interpolation Variable
Single Polynomial Variable

Indicates the ith node.
Indicates the jth node.
Indicates two (array);



order of computation. Operations blocks number four, EXECUTION, VARIABLES 1,
VARIABLES 2, and OUTPUT CALLS. These operations blocks are described in.
the SINDA Users Manual’» * but their role insofar as the numerical solution

routines are concerned may be of particular interest.

6.2.2.1 EXECUTION Operations Blockk

- The EXECUTION operations block provides the user considerable
flexibility in the use of SINDA calls and FPRTRAN operations. Combinations
of SINDA calls and FPRTRAN operatidns are innuﬁerable since the user is
actually programming. Now all instructions contained in the VARIABLES 1,
VARIABLES 2_and @UTPUT CALLS are performed each iteration or on the output
call interval. Thus, if an operation beiﬁg performed in VARIABLES 1
utilizes and generates non-changing constants, the operation should be
placed im the EXECUTION block (prior to the numericél solution call) so
that it will be performed only once and thus eliminate repetitious non-
changing calculations. Dperatiqns of this type are conveniently performed
in the EXECUTION operations block. Note,‘however that a constant impressed
source should be placed in tﬁe opﬁiénal source data block for SINDA and
VARIABLES 1 block for CINDA-3G,

6.2.2.2 VARIABLES 1 Operations Block

The VARIABLES 1 operations block provides the user with a
means of specifying at a point in the computatiomal sequence, as shown in
Figure 6.2-~1, the evaluatipn of nonliﬁear network elements, coefficients
and boundary values not considered,by the various mmemonic codes utilized
for node, conductor and source data. It is seen from Figure 6.2-1 that
VARIABLES 1 operations occur just prior to éntering the numerical solution

phase in order to define the network completely.

6.2.2.3 VARIABLES 2 Operations Block

VARIABLES 2 operations are post-solution operations in contrast
to the VARIABLES 1 operations which are pre-solution operations as shown
in Figure 6.2-1. VARIABLES 2 provides the user with a means to examine
the characteristics of the numerical solution and make corrections. For
example, the heat flow from one node to another can be evaluated or a
temperature(s) determined without:material;phase change can be_corrected

to account for the phase change by using the VARIABLES 2 operations block.
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. 6.2.2.4 QUTPUT CALL Operations Block

J

The QUTPUT CALL operations block provides the user with a means of
calling any desired subroutine with the operation performed on the output
interval. In addition to various subroutines for printing output, several

plotting subroutines are available.3»"

§.2.3 Control Constants

‘Control constants number forty-nine and have alphanumeric names.
Control constant values are communicated through program common to specific
subroutines which require them. Whenever possible, control constant values
not specified are set internally to acceptable values. If a required con-
trol constant value is not specified, an appropriate error message is printed
and the program terminated. Each of the SINDA numerical solution routines
employs a number of control constants which fall under the categories as:
(1) user specified; (2) optionall& user specified; (3) internally set by
program; and (4) dummy. These control constants are listed alphabeticall&
with a brief description of each in Section 6.2.3.1 followed by a detailed
description of ﬁser specified control constants in Section $.2.3.2; nominal
values of these control comstants that must be specified or are optiocmally
specified for each SINDA numerical solution routine are indicated in
Table 6.2-5. Specification of these control constants is detailed under the

discussion of each SINDA numerical solution routine.

6.2.3.1 Alphabetical Listing and Brief Description of Control Constants

ARLXCA (control constant 19)

Maximum arithmetic node relaxation temperature change allowed
between iterations; this pheck occurs after each iteration.
Specification is required for the implicit and steady state '
routines (except CINDSM) and if not speéified an error

message is printed if the number of arithmetic nodes is greater
than zero. Specification is not required for explicit routines

and if not specified, ARLXCA is set to 1.E+8.
ARLXCC (control constant 30)

Maximum arithmetic node relaxation temperature change calculated

by program; ARLXCC < ARLXCA check is made.
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ATMPCA

ATMPCC

BACKUP

BALENG

CSGFAC

CsGMAX

CSGMIN

(controlAconstant 11)

Maximum arithmetic node temperatuie change allowed between

time steps for transient routines; the check occurs after the
specified number of iterations. £ not specified or if specified
to be < 0.0, ATMPCA is set to 1.E+8. N

(control constant 15)

Maximum arithmetic temperature change calculated by program;

ARMPCC < ATMPCA check is made.
(control constant 12)

Backup switch that is checked after VARIABLES 1 and VARIABLES 2
calls. Initialized at zero. If specified to be non-zero, the

completed time stepbis erased and repeated.
(control constant 33)

A user specified system energy balance to be maintained; this
control constant is presently used only in CINDSM. If not

specified, an error message will be printed.
(control constant 4)

Time step factor for explicit routines except CNFAST. If not
specified or if specified to be less than 1.0, CSGFAC is set
internally to 1.0.

(control constant 23)

Maximum value of Ci/Z Gij; this value aids in the checkout of
the thermal network and is calculated only by the output sub-
routines, CSGDMP and RCDUMP.

(control constant 17)

Minimum value of Ci/Z Gij;' this value is used to limit the
computational time step for explicit methods of solutionm.

If CSGMIN is calculated to be < 0.0, an error message is printed.
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CSGRAL

DAMPA

DAMPD

DRLXCA

DRLXCC

DTIMEH

DTIMEI

DTIMEL

{control constant 24)

Allowable range between CSGMIN and CSGMAX: this coatrol constant’

is not presently used but is included for future considerations.

(control constant 9)

Arithmetic-node damping factor for all numerical solution routines;
if not specified, or if specified to be < 0.0, DAMPA is set to 1.0.
(Refer to equation 6.2-6,) :

(control constant 10)

Diffusion node damping factor for implicit and steady state routines;

if not specified or is specified to be < 0.0, DAMPD is set to 1.0.

’ (Refer to equation 6.2-20.)

(control constant 26)

" Maximum diffusion node relaxation temperature change allowed between

iterations for implicit and steady state routines; this check occurs
after each iteration. If not specified an error messagé will be
printed when the number of diffusion nodes is greater than zero.

(control constant 27)

Maximum diffusion node relaxation temperature change calculated by

the program; DRLXCA < DRLXCC check is made.
{control constant 8)

Maximum time step allowed; applies to transient routines. If
not specified or if specifie& to be < 0.0, DTIMEH is set to
l‘o E—8 .

(control constant 22)

Specified time step for implicit solutions; 1f not specified,

an error message will be printed and the "run" terminated.

(control constant 21)

Minimum time step allowed for explicit routines. If not specified

for CNFAST, an error message will be printed and the "run"

terminated. If DTIMEU is less than DTIMEL the routines will
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DTIMEU

DTMPCA

DTMPCC

ENGBAL

LAXFAC

LINECT
LOYPCT
NPCOHPY

NLg@P

terminate with an error message, except for CNFAST which will
do a steady state solution on the offending node. For all

routines DTIMEL is initially set at 0.0 in;emally.
(control constant 2)

Contains time step used in ccmputatioﬁal Procédure;'
(control constant 6)

Maximum diffusion node temperature change allowed between
time steps for transient routines. If not specified or if

specified to be < 0.0, DIMPCA is set to 1.E+S8.

(contrdl constant 15)

Maximum diffusion node temperature change caltuléted by program;
DIMPCA < DTMPCC check is made.

(control constant 32)

Calculated energy balance of the system; -presently uséd only
in CINDSM.

(control comstant 49)

Specified number of iterations to be performed on a linearized
system with no updating of elements during a set of LAXFAC itera-
tions for CINDSM only; if not specified, an error message is

printed and the "run" terminated.

.(control constant 28).

. A line counter location for program output (integer).

(control constant 20)
Contains number of iterations performed (integer).
(control comstant 34)

Contains the no copy switch for matrix users.

(control constant 5)

Number of specified iteration loops..  Must be specified for thne

steady state and implicit routines; if not specified, an
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$PEITR

YUTPUT

PAGECT -

4

TIMEN

TIMEND

TIMEQ

error message is printed and the "run" is terminated. Optional

specification for solution of the arithmetic nodes in the

explicit routines; if not specified, NL$PP is set to integer 1.

{control constant 7)

Qutput each iteration if @PEITR is specified to be non-zero; if
not specified, @JPEITR is set at zero. May be switched on and

off during a run.
{(control constant 18)

Time interval for activating @UTPUT CALLS of transient routines;

if not specified, error message is printéd and the "run" terminated.
May be addressed by user and'modified dufipg a run in VARTABLES é.
Can be used in steady state routines for a series of steady state

sclutions.

(control constant 29)

A page counter location for program output (integer).
(control constant 14)

, TIME$ + TIMEN -
Mean time for a computation interval; TIMEM = ¢2.0 .

(control comstant 1)

New time at the end of the computational interval.

TIMEN = TIME@ + DTIMEU.
(control constant 3)

Problem stop time for transient analysis. Must be > TIME¢ for
all routines; if not, an error message is printed and "run"
términated. May be addressed by the user and modified during

a ‘run.

(control constant 13)

'01d time at the start of the computational interval. Also

used as the problem start time and may be negative; if not

specified, TIMEY is set at zero.
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ITEST, JTEST, KTEST, LTEST, MTEST (control constants 39, 40, 41, 42
and 43, respectively)

Contain dummy integer constants.

RTEST, STEST, TTEST, UTEST, VTEST (control constants 44, 45, 46, 47,
and 48, respectively)

Contain dummy floating point constants.
{Control constant 31)

Problem type indicator, 0 = THERMAL SPCS, 1 = THERMAL LPCS,
2 = GENERAL. .

-(Control constant 35)

Contains relative node number of CSGMIN.
{(Control constant 36)

Contains relative node number of DTMPCC.
(Control constant 37)

Contains relative node number of ARLXCC.
{Contrel constant 38)

Contains relative node number of ATMPCC.

6.2.3.2 User Specified and Optionally User Specified Control Comnstants

The availablity of control conétants which must be specified or
which can'optionally be specified providés the user with considerable
flexibility to alter the computational criteria and hence the calculated
temperatures. On the other hand, this flexibility presents the user with
the problem of imputting control conétant values if the nominal values are
not suitable. An attempt will be made here to provide some guidelines
on control constant values based on rather limited data presently available,
but it should be recognized that suitable values to be used are dependent
on the problem to be solved and often a trade-off must be made between
accuracy and computational time. This normally can be obtained only

through the use of the numerical solution routines.
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ARIXCA  (Allowable Arithmetic Node Relaxation Teémperature Change)

This control constant must be specified for the imﬁlicit»routines
if any arithmetic node is present and for the steady state routines except
CINDSM. For the explicit solution routines, ARLXCA may be optionally
specified; 41if not specified ARLXCA is set to 1.EH8. . ARLXCA reprgsents>
a maximum temperature change convergence criterion for the arithmetic nodes;
ARLXCA 1is cﬁecked each iterative step.. It is used in conjunction with
control constant NLOPP.  Satisfaction of either NLPPP or ARLXCA during any
iterative step terminates the arithmetic node temperatures calculation for
that time-step with computation proceeding on to the next one. Typically,

'~ an ARLXCA value is 0.01, but its value is dependent upon the magnitude of
expected -temperatures. The 0.0l value iries for 5th digit accuracy for
temperatﬁres in the hundreds. An ARLXCA value of 0.0001 would try for
seventh digit accuracy. Since the compufer will not yield 8 digit accuracy,
an ARLXCA value < .0001 will always result in NL@@P iterations being

performed.

ATMPCA (Allowable Arithmetic Node Température Change)

This control constant may be optionally specified by the user for
the impiicit routines and for the explicit routines except CNFAST. If not
" 'specified, ATMPCA is internally set at 1.E+8. ATMPCA represents an
allowable arithmetic-node temperature change criterion between one time-
step and another with the calculated temperature change stored in control
constant ATMPCC. If the maximum arithmetic-node temperature change is

greater than ATMPCA, the time—step, At, 1is shortened to,
At = .95 *At (ATMPCA/ATMPCC)

and the arithmetic-node and diffusion-node temperatures re-set to former
values. The computational procedure is repeated with the smaller time-step.
Specification qf ATMPCA prevents a rapid temperature change between time-
steps with the value to be specified dependent upon the problem. Thus, the
user should estimate the number of time-steps and‘the range of the tempera-
ture to arrive at a reasonable value. For typical spacecraft-type thermal
problems an ATMPCA of about 10°F is typical. .
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BACKUP {Backup Switch)

Control constant BACKUP provides the SINDA user with the means
to utilize any thermal numerical solution subroutine as a predictor program.
A1l of the numerical solution subroutinés set control constant BACKUP
to zero, just prior to the call on VARIABLES 2. Then immediately after the
return from VARIABLES 2. a nonzero check on BACKUP is made., If BACKUP is

nonzero, all temperature calculations for the just completed time-step

are eliminated, the old temperatures (temperatdres calculated at the
previous time-step) are placed in the temperature-locétions and the

control is routed to the start of the computational sequence.

It §hould be noted that the user must provide the necessary
check and criterion in VARIABLES 2 if the iteration is to be repeated.
Thus, if the iteration is to be repéated,-BACKUP must be nonzero and a
criterion that can be met in subéequent passes established. For example, the
criterion may require the correction of a parameter used by the network
solution. Further, if other calls in VARIABLES 2 are not to be performed

FPRTRAN instructions must be generated to bypass these calls.

It should be noted that BACKUP is scometimes checked after
VARIABLES 1. However, for the present this use should be ignored since
BACKUP check after VARIABLES 1 is planned for future additions of special

boundary calculation subroutines..

BALENG (User Specified System Energy Balance)

This control constant is presently used‘in the steady state
routinekCINDSM but not in the other SINDA numerical solution routines.
BALENG must be specified; otherwise the "run" is terminated with an
error message printout; the value of BALENG is a criterion that represents
an acceptable net energy balance (eﬁergy in minus energy out) of the system
in the calculation of steady state temperatures. A value for BALENG
depends upon the magnitude of system energy under consideration. As a
guideline 1/2% of the total energy into the system (including heat flow

from the boundary) is a reasonable value.

CSGFAC (Time Step Factor)

This control constant may be optionally specified by the user
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for the explicit routines except CEFAST and it provides the user with some
control on the compute time-step as indiéated in Section 6.2.4. If CSGFACF
is not specified or is specified to be less than one by the user, it is
internally set at 1.0. For subroutines‘CNFRWD and CNFRDL which are con-
ditionally stable CSCFAC is a divisorj a value of CSGFAC greater than one
is used to obtain higher accuracy. For subroutines CNEXPﬁ, CNDUFR and
CNQUIK, which are unconditionally stable, CSGFAC is a multiplier (refer to
page 6-24); a value of CSGFAC greater than one is used to decrease the
computational time. A question may be.raised, why -a value of CSGFAC less
than one is not allowed for CNEXPN, CNDUFR and CNQUIK? The reason for
this is that it is more accurate to use CNFRWD (or CNFRDL) if a smaller

time-~step than the one associated with CSGFAC equal to one is desired.

DAMPA (Damping Factor for Arithmetic Nodes)

This control constant may be optionally specified for all of the
SINDA numerical solution routines; if not specified, of if specified to be
< 0.0, DAMPA is set to 1.0. In the development of the finite difference
expressions as reported in technical literature, little (if any) mention is
made about the so-called damping factor. The damping factor does ndthing
more than to allow a certain fraction (1.0 -ADAMPA) of the "old" temperature
(temperature at the previous time-step or iteration) to be included as part
of the temperature change for the current time-step or iteration. The
value to be used is dependent upon the problem and to some extent ﬁpon the
routine. Typically, a value of 0.6 is used but a value as small as 0.01
has been used with CINDSi for a thermal radiation-dominated problem. In
general, a choice for DAMPA becomes a trial and error procedure. DAMPA is

used only with arithmetic ncdes (refer to equation 6.2-6).

DAMPD (Diffusion Node Damping Factor)

This control constant may be optionally specifiéd for the implicit
and steady state routines; if not specified or if specified to be £ 0.0,
DAMPD is set to l.Q. DAMPD serves the same purpose for the diffusion nodes
as DAMPA provides for the arithmetic nodes (refer to equation 6.2-21).

DRLXCA (Allowable Diffusion-Node Relaxation Temperature Change)

This control constant must be specified'for the implicit routines

and for the steady state routines except'CINDSM. DRILXCA serves the same
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purpose for the diffusion-nodes as control constant,ARLXCA'does for the
srithmetic nodes. Thus, the discussion on ARLXCA equally holds true for
DRIXCA. It may be asked; why ARLXCA and DRLXCAZ The_#eason for this is.
that it provides greatér compﬁtatibnal flexibili;ya

DTIMER (Maximem Time-Step Allowed)

This control constant may be optionally specified fbr the explicit
and the implicit routines. DTIMEH represents the maximum time-step allowed
during the computational process. One use of DTIMEH is the prevention of a -
single large and a single small computational time-step during'an output interval
by specifying DTIMEH as a fraction of the output intervai. If DTIMEH is not
specified, DTIMEH is set to 1.0E+8.

DTIMEYL {Specified Time-Step for Implicit Routines)

This control constant must be specified for the iﬁplicit routines
and is not used by the other routines. If not specified, the "run" terminates
with an error message priantout. - DTIMEI represents a specified time-step and
is arbitrary, but the goverhing criterion should be minirum computational |
time with satisfactory tempeiature accuracy. This maéns that DIIMEI should
be specified in conjunction with control constant NL@P which represents the
raximum number of computatiopal iterations allowed during each time-step. Since
each iterative calculation is essentially equivalent to a time—step calcula-

tion, DTIMEI should be normally greater than NL@@PP*CSGMIN, where CSGMIN is

-the time-step used in the explicit routines. If savings in computational

time cannot be met with the same accuracy by using the implicit routines,

it is more reasonable to use the explicit routines.

DIIMEL = (Minimum Time-Step Allowed)

This control constant must be specified for subrouiine CNFAST and
is optional for other explicit solution routines. If not specified for
CNFAST, the "run" terminates with an error message printout. DTIMEL repre-

" sents the minimum time-step allowed; for all the explicit routines except

CNFAST, if the calculatéd time-step is less than DTIMEL, the "run" terminates
with an error message printout. For subroutine CNFAST, if the calculated
time-step of any no@e, as expressed by Ci/ZGij and stored in CSGMIN, is less
than DTIMEL, the temperature of the nodes not satisfying DTIMEL are calculated
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using the steady state equations without computational iterations

(refer to Section 6.3.3 for details on the CNFAST routine). The pur-
.pose of this control constant for CNFAST is to shorten tke computationa1
time; the danger in its use is that with a large DTIMEL a large number of
diffusion nodes will receive the steady state equations without iterations.

As a result, the temperature inaccuracies can be expected to be 1atge.

DIMPCA (Allowable Diffusion Node Temperature Change)

This control constant may be eptionally specified by the user for
-tte implicit routines and for the explicit routines except CNFAST. DIMPCA
represents a diffusion-node temperature change criterion between one time-~
step and another. If the maximum diffusion—ndde temperature change which is

stored in DIMPCC is greater than DTMPCA, the timeé-step is shortened to,
At = .95 * At (DTMPCA/DTMPCC)

and the diffusion-node and arithmetic-node temperatures re-set to former
values. The computational procedure is repeated with the smaller time-
step. DIMPCA serves the same purpose for the diffusion nodes as control’

constant DRLXCA provides the arithmetic ncdes.

LAXFAC (Number of Iterations for Linearized Lumped Parameter System)

LAXFAC is used only in the steady state routine CINDSM and repre-
eents the number of iterations to be performed on a linear lumped parameter
system with no updating of elements during a set of LAXFAC iterations. The
system elements are re—evaluated for the.new set of temperatures and in
turn temperatures are recalculated for another set of LAXFAC iterations
with a more severe relaxation criterion. The number of iterations will not
exceed control cdnstant NL@@P which represeﬁts the total number of itera-~
tions. NLOPP will not be met'only if relaxation criteria are met during an
 iterative loop and between iterative loops and if the system energy balance

as stored in BALENG is satisfied (refer to Section 6.5.3 for details)

NLOGP (Number of Iteration Loops)

This eontrol constant must be specified for the implicit and the
steady state routiﬁes; if not specified, the "run" terminates with an
error message printout. NL@@P may be optionally specifled for the explicit
routines since it is used for the arithmetic nodes; if not specified, NL@@P
is set to 1. The value of NL¢¢Pkto bevused depends upon the problem
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to be solved. For a steady state problem it is not unusual to have NLO@P
equal to several hundred, whereas for a traﬁsient problem the impliéit
routines NL@PP should be specified as discussed for control constant
DIIMEI. In general, a trial and error procedure is reduired to arrivé at
a suitable value of NL@@P.

OUTPUT (Time Interval for Activating $UTPUT CALLS)

. This control constant must be specified for all numerical sclution
routiﬁes except steady state routines since the first time-step used is
generally set -to PUTPUT. The input,valué is left to the judgment of the
user. Normally, the output interval is gauged by the length of the run and
the expectéd temperature response characteristics. As a "rule-of-thumb"
the output interval lies between CSGMIN and CSGMAX, with @$UTPUT being
several times larger than CSGMIN. The values of CSGMIN and CSGMAX can be

obtained from the output subroutines CSGDMP and RCDUMP.®>" Subroutines
CSGDMP and RCDUMP are designed to aid in the checkout of thermal problem

data decks and should be used before making a transient computer rum.

TIMEND (Problem Stop Time)

The use 6f this control constant is self-explanatory. For the
subroutines as they are pfesently coded, TIMEND must be specified as larger
than TIME@, otherwise an error message is printed and the "fun" terminated.
For the explicit routines, if‘TIMEND is not larger than TIMEf a time-step
of zero will result and the "TIME STEP TOO SMALL" error message will be
printed. The implicit routines will‘print the errcr message, "TRANSIENT
TIME NOT SPECIFIED." 1If a solution’is to be terminated by the use of a
criteria, but the run is not to be tefminated, this can be accommodated by
setting TIMEND=TIMEQ when the criteria is met. '

TIME¢ (""01d" Time or Problem Start Time)

This control constant represents the "01d" time or the problem

- start time for the transient routines. If not specified, TIME§ is set to

0.0. An important consideration in the use of TIME§ is that TIMEP may be
set to negative. »

6.2.4 Time-Step Calculations

Each numerical solution routine requires the use of a time~step

that depends upon many considerations, such as the output interval, the end
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of the problem time, the stability criterion for explicit,routines; etc.

In spite of the unique solution procedure of each of thg’numeritai solution-
routines, the overali time-step calculation procedure for the transient
routines is essentiallyvidéntical, The pumerous time-step checks, as well
as the selection of the time-step, are indicated below {for definition of

control constants refer to Section 6.2.3}:
(1) Check that elapsed time, t, does not exceed problem end time.

If: TIMEp + GUTPUT > TIMEND
Set: QUTPUT = TIMEND - TIMED

TIME$ is the old time
$UTPUT is the output time interval
TIMEND is the problem stop time

(2) Set initial time-step, At, which is stored in DTIMEU (control
constant for time-step). The initial time step for the SINDA

numerical routines is as follows: g

Numerical Routines Initial Time-Step

EXPLICIT CNFRWD @UTPUT

EXPLICIT CNFRDL UTPUT

EXPLICIT CNEXPN  @UTPUT

EXPLICIT CNDUFR @UTPUT

EXPLICIT CNQUIK PUTPUT

EXPLICIT CNFAST DTIMEL (minimum time-step allowed)
IMPLICIT CNBACK DTIMEI (specified time-step)
IMPLICIT CNFWBK DTIMEI |

IMPLICIT CNVARB. DTIMEI

(3) Check At (stored in DTIMEU) against maximum allowable time-step.

If: DTIMEU > DTIMEH
Set: DTIMEU = DTIMEH

(4) Check sum of elapsed time since last printout, TSUM, and time-
step, DTIMEU, against @UTPUT.

If: TSUM + DTIMEU > QUTPUT
Set: At = @UTPUT - TSUM
If: TSUM + At < @UTPUT
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and if: TSUM + 2(At) > QUTPUT
Set: At = 1/2 (OUTPUT ~ TSUM)

(5) Store
Set: DTIMEU = At
(6) Check DTIMEU against minimum allowable time-step.

If:  DTIMEU < DTIMEL
Result: An error message is printed and the "run" terminated
except for CNFAST, CNBACK, CNFWBK and CNVARB.

(7) Set new time (TIMEN)
Set: TIMEN = TPRINT + TSUM + At

TPRINT is the time of the last printout.
TSUM is the time from the last printout.

(8) Set mean time (TIMEM)
Set: TIMEM = 1/2 (TIMEN + TIME()
(9) cCalculate (or specify) time-step.

The calculated'(or specifiea) time-step for the SINDA numerical

routines is as follows:

Numerical Routines Calculated Time-Step -
EXPLICIT CNFRWD 0.95 * CSGMIN/CSGFAC .
EXPLICIT CNFRDL 0.95 * CSGMIN/CSGFAC
EXPLICIT CNEXPN 0.95 * CSGMIN * CSGFAC
EXPLICIT CNDUFR 0.95 * CSGMIN * CSGFAC
EXPLICIT CNQUIK 0.95 * CSGMIN * CSGFAC
EXPLICIT CNFAST larger of CSGMIN or DTIMEL
IMPLICIT CNBACK DTIMEI
IMPLICIT CNFWBK DTIMEI
IMPLICIT CNVARB DTIMEI
CSGMIN = C, /26, (minimum value, i = 1,2,...,NND)
where: Ci is the capacitance of the ith node

Gij is the conductance from node i to node j

CSGFAC is the time-step factor (see above),
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(10) It should be recognized that individual routines may have slight

varjations to the time-step calculatiocns.:

6.2.5 Computation of Temperatures

The actual calculation of temperatures, be it for diffusion nodes
or for arithmetic nodes, reprasents the end result of a long computational
procedure with many checks and criteria. Nevertheless, if one confines the
-discussion to the DY loops of nodal types, a rather compact but general
computational pattern becomes apparent. More details are presented in the

individual sections describing each numerical solution routine. (Sections
6n3 - 6.5)

6.2.5.1° Transient Explicit Routines

For the explicit routines the diffusion and arithmetic nodes are
treated separately. Diffusion-node temperatures are calculated explicitly,
whereas the arithmetic-node temperatures are computed implicitly. This
means that at each time-step an iterative loop is set-up for the arithmetic

nodes; none is required for the diffusion nodes.

Diffusion-Node Temperatuzes

Calculation of the diffusion-node temperatures follows the

VARIABLES 1 call@ the computational pattern is:
DP~L@PP (I = 1, NND) on the diffusion nodes is established.

The functions associated with the variable capacitance Ci’ the

variable impressed source 9 and the variable coefficients Gk (aij
for conduction and cbij for radiation), between diffusion-diffusion

and diffusion-arithmetic nodes are updated at the beginning of each
time-step. These functional types are described in Section 6.2.1.2

and the computational pattern is indicated in the flow chart of

Figure 6.2-3.

Using the updated Ci’ q and Gk’ the branch heat flow sum, Q .,

, si
and conductance sum Xi’ are calculated (refer for. example to flow

chart of Figure 6.3-1).
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Obtain type, array and
constant location

1

I'Evaluate function

(refer to section 6.2.1.2)

No

Doﬁble type function:_

{ Yes

Obtain second array and
constant location

1

Evaluate second function
combine with the first

;

Continue

* Variable capacitance (ci),
impressed source (qi), or

variable coefficient (Gk).

Figure 6.2-3. Evaluation of Nonlinear Capacitance,
Source or Conductance
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~ p .
Qsi = I G (T, - T, ) +'qi,n (6.2-1)

X, = L G (6.2-2)
T i

where, p = total number of nodes; n = time-step old
C.»q.,a,.,b,.= optionally specified (refer to Table 6.2-1 - 6.2-4)
i*M4°713% i3 9 2

Gij,n = aij,n + Gbij,n (Tj,n + Ti,n)(Tj,n +'Ti,n)

. P
Stability criterion C.,/ I G,
i j=1 ij,n

is stored in control constant CSGMIN.' - If CSGMIN < 0.0, an error

is computed and the smallest value

message is printed and the "run" terminated.

' Diffusion-node temperatures are calculated by using the appropriate
finite difference expression associated with each

routine. These routines and algorithms are identified as:

CNFRWD and CNFRDL (Section 6.3.1), uses standard forward-
difference algorithm.

CNFAST (Section 6.3.2), uses a modified CNFRWD computational
procedure to decrease the computational time;

CNEXPN (Section 6.3.3), uses the exponential prediction method.

CNDUFR (sectibn 6.3.4), uses DuForthrankel method.

CNQUIK (Sectiqn_6.3.5), uses half DuFort-Frankel and half

exponential prediction metnod.

Symbolically, the expression for the diffusion-node temperatures may
be written as, '
At Qsi o
_Ti,n'i"l = Ti,n ’+ —-C-—l——-— , - (6.2-3)
Except for CNFAST the maximum diffusion-node temperature change
which is stored in DTMPCC iS'checked against the allowable diffusion node
temperature change‘which may be specified by the user via the control
constant DTMPCA (if ndt specified DTMPCA = 1.0E+8). If DTMPCA is not
satisfied, the time-step is decreased to,

At = .95 * At (DTMPCA/DTMPCC)
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and all temperatures re-set to former values. The computatiohal procedure
is repeated with the smaller time-step. CNFAST does not allow for the

recalculation of diffusion-node temperatures.

Arithmetic~Node Temperatures

Calculation of the arithmetic-node temperatures always follows the
computation of the diffusion-node temperatures and uses "successive point"

iteration. The computational pattern is as follows:
Arithmetic-node damping factors DN and DD are established.

DN = DAMPA (optionally specified user constant, if not specified
DAMPA = 1.0; factor for the current time-step temperature
change)

DD = 1.0 - DN (factor that allows a certain fraction of the "old"

temperature to be included as part of the temperature change

for the current time-step)

.
Iterative D@-L@PP (K=1,NL@¢P) is established (NLYPP is the number of

iterations specified by the user, if not specified, NL@@P = 1).
D-LPgP (I=NND, NND + NNA) for the arithmetic nodes is established.

Impressed source 9 and coefficient Gk (aij for conduction and

Gbij for radiation) are updated once for each time-step.

Using the updated Gk and PE the branch heat flow sum Qsi and

the conductance sum X, are calculated (refer to flow chart of

1
Figure 6.3-2).
P - |
QSi i jil Gijsn (Tj,k - Ti,k) (6.2=4)
: 6.2-5
xi‘j=1 C44,n (6.2-5)

Arithmetic node temperatures are calculated for each iterative loop -
by using the following "successive point" expression, which is employed
in all of the routines,
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i P
U,n ¥ 2 Cijgn Tj,k+l+j=§_+lgij,n R"
Ty pap = DDFT; o + DI i - : . 7} (6.2-6)
jfl €41,n
where, i = (NND+1), (NND#2),..., (NND + NNA)
T, = constant, (NND + NNA) RS '
p = total number of nodes
Ti,k = temperature at ktgkite?at%on E
13,0 = 213,n T Pig,n Ty,0 +'T:21,k);(Tj,2 T )
(0 =kif j >4 and % =kl 1f § < 1)
(aij,n and bij,n mean updating at time-step, n)
q;, a 5 bij = optionally specified (refer to Tables 6.2-1 - 6.2-4)
DN = DAMPA (arithmetic node damping factor)

Db =1.0~DN

The maximum arithmetic-node relaxation temperature change is
calculated aﬁd checked against the allowable arithmetic-node relaxation .
temperature change which may be specified via the control constant ARLXCA.
This relaxation convergence check is made during each iterative step calcu-
lation and is used in conjunction with control constant NL@PP. Satisfaction
of either ARLXCA or NL@¢P during any iterative step terminates the arithmetic-

node temperature calculation.

For each time éteb, except for CNFAST, the maximum arithmetic-node
temperature change which is stored im control conétant ATMPCC is checked
against the allowable arithmetic-node temperature change which may Be
specified via the control constant ATMPCA (if not specified, ATMPCA = 1.0E+8).
If ATMPCA is not satisfied, the time-step is decreased to, |

At = .95*At (ATMPCA/ATMPCC)

and all temperatures re-set to former values. The computational procedure
is repeated with the smaller time-step. CNFAST does not allow for recalcula-

tion of arithmetic-node temperatures.

6;2.5.2 Transient Implicit Routines

Both diffusion-node and arithmetic—node temperatures are calculated

by "successive point" iteration. Although these calculations are performed
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ca the same iterative pass, diffusion node temperatures are evaluated on its
own comﬁﬁtational loop using a specified algorithm associated with a partic-
ular implicit routine. Calculation of the arithmetic-node iemferatures is
also done on its own computational loop and is identical in all the implicit
routines. As a2 matter of fact, arithmetic—node'témperatures are calculated
in the same manner in all the SINDA numerical solution routines. Use of a
separate computational loop for the diffusion nodes permits the extrapolation
of diffusién—node temperatures provided acceleration of convergence criterion

is met (refer to Section 6.2.7).

Diffusion-Node Temperatures

In order to facilitate the discussion to follow on the computa-

tional procedure, it is convenient to examine the forward-backward finite

difference ex‘pression.13

(T =T, )
i,k+1 i,n’ _ . _ _
¢ At 8 Ttorvara * @ -8 Thackward (6.2%7)
where: B = factor with range 0 < B < 1/2
5 P T
Teorward = Y4,n ¥ . Z 3350 (Ty,n = Tan) + 2 by (T 7Ty ) (6.2-8)
3 P Lo b
Tbackvard = %,n +j§1 253 ,'n(Tj,k+1’Ti,k+1)’+j§1 ob; 5 T4, 101 T4, 1) (62279
i=1,2,...,N
. = <4 <
Tj’n, Tj,k+1 constant, N < j < p
n = nth time-step; k = kth iteration within‘a given time-step.
Cy29558;4>b;; = optionally specified (refer to Tables 6.2-1 —~ 6.2-4)

Any value of B less than one yields an implicit set of equations
which must be solved simultaneously. For values of B less than or equal to
one-half equation (6.2-7) represents an unconditionally stable set of equa-
‘tions, whereas values of B greater than one-half yiélds a set of equatioms

with conditional stability.

The standard implicit algorithm used in subroutine CNBACK follows
directly from equation (6.2-7) by letting B = O, whereas the Crank-Nicolson
method used in subroutine CNFWBK follows by letting B = 1/2. Subroutine
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CNVARB uses a variable factor which is based upon the ratio of CSGMIN/DTIMEU;
this ratio is internally calculated in CNVARB (refer to Section 6.4.3.2).

In order to simplify the preseatation, the following ﬁotation-is used.

For CNBACK (B = 0):

i P ,
Q. =Q . + I G, T, (6.2-11)
sum 1, ij.n Joktl jeisy om 1k
: (6.2-12)
- T a,. 2=
Ssum = €i,n t j=1 Ho®
= 3 _
Gij,n aiJ,n + 0 ij,n Tj,2 -(6.2 13)
(8 =k, if § > i and £ = k#l, if j < i)
(q.) -1 g ob [(T4 ) + (Ta ).1, average heat loss (6.2-14)
i‘ave 2 i1 ij,n ik ik’2%°

from ith node, called radiaticn damping (refer to
Section 6.2.6 for details)

= 0,if radiation is not present

For CNFWBK (B = l) (note equation (6.2-7) is multiplied by 2):
2 - :

(T, - T, )

, i,n .0 j=1 aij,n jonx i,n
P _ 4 4 | .
+ I ob,. (T. -T, ) (6.2-15)
j=1 ij,m " j,n i,n

same as equation (6.2-11)

qum =
—_ P _—
- j=1
Gij,n = gsame as equation (6.2-13)
(qi)ave'= same as equation (6.2-14)

For CNVARB (variable B') (note that equation (6.2-7) is multiplied by 2,
so that B' = 28 now ranges, 0 < B' < 1.0): ‘
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— P 4 A
= !l - - -
Qi Zqi,n+ ZCi’n Ti,n+6 \E aij,n(Tj,.n ‘i,n) +E Gbij,n Tj - Ti,n)) (6.2-17)
j=1 "7 ' j=1 ,
, i P
Q =Q, +2.0-8"Y1 2 ¢ T, + I 6G,, T ) (6£.2-18)
sum i j=1 ij,n "j,ktl j=i+l ij,n i,k :
= R4 (6.2-19)
t—1 - L} . .
.Gsum 2 Ci,n + (Z.OV - 8") j£1 aij,n
Gij,n = game as equation (6.2-13)
_2.0-8 P e 4 |
(qi)ave 5 'jzl Gbij,n [(Ti,k) + (Ti,k)Z] , average heat (6.2-20)
loss from ith node, called radiation damping (refer to
Section 6.2.6 for details)
= 0, if radiation is not present
i = l,z’.'.,N
B = 2,0*%CSGMIN/DTIMEU (range allowed, 0 < B' < 1.0)

T 3 Tj k= constant, N < j < p ‘(p is the total number of nodes)
s : ,

n = nth time-step; k = kth iteration

Ci’ 9 aij”bij = may be optionally specified (refer to Tables 6.2-1 - 6.2—4)

ci,n = ci,n/At

Calculation of the diffusion-node temperatures follows VARIABLES 1
call; the computational pattern is:

Iterative DP-L@@P (k1=1,NLOOP) for the total nodal system is established.
First Iterative Loop: . '

DO-LOOP (I=1,NND) on diffusion nodes is established.

The functions associated with the wvariable capacitance Ci’ the
varlable impressed source qs and the variable coefficients Gk (.aij
for conduction and Gbij for radiation) between diffusion-diffusion
and diffusion~arithmetic nodes are updated once for each time-step.
These functional types are deécribed in Section 6.2.1.2 and the com-

putational pattern is indicated in the flow chart of Figure 6.2-3.
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Ail known quantities (those evaluated at time-step n) are summed and

are identified by the symbol Qi {(equations 6.2-10, 6.2-15 and 6.2-17).
CSGMIN is evaluated. ‘

Radiatibnvdamping is used; éverage radiation heat loss, (qi)ave;

from

the ith node is evaluated (refer to Section 6.2.6).
For CNVARB, B'= 2.0*CSGMIN/DTIMEU is calculated.

The diffusion-node temperatures are calculated by "successive point"
iteration (actually CNBACK and CNFWBK have slightly different first
iterative pattern than CNVARB but the difference is not significant).

1e . (6.2-21)

= % ' t3 -
Ti,k+1 PD Ti,k + DN {qum (qi)ave

DN = DAMPD (use specified diffusion node damping factor,
if not specified, DAMPD = 1.0)
DD = 1.0 - DN ‘
. , . l
For CNVARB, the diffusion-node relaxation temperature change is

calculated; maximum value is stored in DRLXCC.

Second and Succeeding Iterative Loops:

With the iterative loops after the first, those quantities Ci’ 9y and

6, which were updated during the first iteration are held constant.
Diffusion-node temperatures are found by using equation (6.2-21).

The diffusion-node relaxation temperature change is calculated and the

maximum value stored in DRILICC.

Check of DRLXCC against DRLXCA (allowable maximum diffusion—node’relaxa—
tion temperature change) is made after the arithmetic-node temperature .

calculations.

Each third iteration, a check on solution convergence is made; if con-
vergence is occurring linear extrapolation to accelerate convergence

is made (refe; to Section 6.2.7).

Arithmetic~Node Temperatures (if any)
During the first iterative loop the impressed source 9y and
for conduction a'nd'cﬂii

ij 3

coefficient Gk (a
arithmetic nodes are updated cnce each’ time-step. On every loop, arithmetic-

for radiation) between arithmetic-
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node temperatures are calculated using "successive point" iteration. The

. finite difference algorithm is presented in Sectiom 6.2.5.1 (equation 6.2-6).

The arithmetic-node relaxation femperaturé change is calculated

and the maximum is stored in ARLXCC.

During Each Iterative Locp After the First.

Both DRLXCC and ARLXCC are checked against DRLXCA and. ARLXCA,
respectively. If both DRLXCA and ARLXCA are satisfied, the iteration

ceases.

If LOPPCT equals NL@PP the message "RELAXATION CRITERIA NOT MET"
is printed.

Both the calculated maximum diffusion-node and arithmetic-node
.temperature change (stored in DIMPCC and ATMPCC, respectively) are checked
against the corresponding ailowable‘temperature change stored in DIMPCA

and ATMPCA. If DIMPCA is not satisfied, the time-step is decreased to,
At = .95%At (DTMPCA/DTMPCC)

and all temperatures re-set to former values. The computational procedure

is repeated with the smaller time-step.
If ATMPCA is not satiéfied, the time-step is decreased to,
At = .95%At (ATMPCA/ATMPCC)

and all temperatures re-set to former values. The computational procedure

is repeated with the smaller time-step.

6.2.5.3 Steady State Routines

Diffusion nodes and arithmetic nodes are treated separatély in
'CINDSS and CINDSL even though from a'physicalfstandpoint a distinction
betweeﬁ diffusion nodes (nodes with ca?acitaﬁce) and arithmetic nodes (nodes
with no capacitance) doesn't exist. Thus, the set of control comstants for
the diffusion nodes and another set of control'constants‘for arithmetic
nodes are similar to those used in the transient routineé. No distinction

in the type of nodes is made in CINDSM.

The computational»procedure to be discussed applies only to CINDSS
and CINDSL: CINDSM is considerably different (refer to Section 6.5.3).
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Diffusion~-Noda Temperaturﬁs (nodes specified with capacitance even thouggA.

the problem is steady state)

An iterative D@~-LOGP (K1=1,NLPPP) is established.

Within this iterative loop a D@-LPPP (I=1,NND) on the diffusion
nodes is made. The functions associated with the impressed source 9 and the
variable coefficients Gk (aij for conduction and Gbi. for radiation) between ‘

diffusion-diffusion and diffusion-arithmetic nodes are updated each iteration.

Diffusion-node temperatures are calculated using "block" iteration

for CINDSS and "successive point" iteration for CINDSL.

"Block'" iteration (CINDSS):

P
..+ L G
, (%1,k 3=1 ij,k J,k)
= DD* * =22}
Ti;k+l DD Ti,k + DN > . (6.2-22)
' I G,,
1=1 ij,k
- - 2

G50k = 21,k TPk (] 3k T T Ty £ Ty )

DN = DAMPD (dlffus1on—node-aamping factor)

DD = 1.0 - DN

i =1,2,...,NND (number of diffusion nodes)

k = kth iteration; p = total number of nocdes

qi,alJ bij = optionally specified to Tables (6.2-1 - 6.2-4)

= constant, (NND + NNA) < j < p (NNA is the number

of arithmetic nodes

J,k
"Successive point" iteration (CINDSL):

1
. . (qi,k bl G e _iﬂGu,k J,k) |
Ty g1 = DO¥I; o + DN (6.2-23)

P
L G

15,k = 245,k T Pyg0 Ty,0 F T ,k)( 3,0 T T,

(%= k if j >4 and & = k#l if j < 1)
DAMPD
1.0 - DN

DN
DD
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i 1, 2, «.., (NND + NNA)
k = kth iteration; p = total number of nodes
Gy> aijf bij = op;ionglly spécified to Tables (6.2-1 - 6.2~4)
Tﬁ,kf constant, (NND + NNA) < j < p (NNA is the total
* number of arithmetic nodes) ’
Diffusion-node reiéxation temperature change is calculated and
the maxiﬁpm is stored in DRLXCC.

Arithmetic-Node Temperatures (nodes specified with no_capacitance)

Within this iterative D@-LOPP a DP-LPPP (I=NND+1l, NND + NNA) is
established.

The fun&tions associated with impressed source 9y and variable
coefficients Gk (aijtfor conduction and bij for radiation) between .

arithmetic-arithmetic nodes are updated each iteration.

. Arithmetic-node temperatures are calculated using "successive
point" iteration.

P P
(qi,k + iilcij,k it j=§+lGij,k Tj,k) -
! = * * L
Ty ey = ADST, |+ AN - (6.2-24)
I G
g1 Hk
G =a 2 + T2

13,k =213,k TPy, Ty, 0 F T30 Ty 0 + Ty 0)

(2 =%k if j > i and & = ktl if j < 1)
AN = DAMPA (arithmetic-node damping factor)
AD = 1,0 - AN
i = (ND+1), (NND+2),..., (NND + NNA) (number of
arithmetic nodes)
= kth iteration

total number of nodes
= constant, (NND + NNA) <j < p

P
T
"1,k
The arithmetic-node relaxation temperature change is calculated
and the maximum value is stored in ARLXCC.
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During Each Iterative Loop

Both DRLXCC and ARLXCC are checked against DRLXCA and ARLXCA,
respectively. If both relaxatico criteria, DRLXCA and ARLXCA, are satisfied,

the iteration ceases.

If both relaxation criteria, DRLXCA and ARLXCA, are not met-with
NL@$P iterations, the message "ITERATION COUNT EXCEEDED, NL@@P = " is
printed.

Energy balance of the system is calculated and is stored in con-
trol constant ENGBAL.

6.2.6 Radiation Damping

Radiation damping denotes an averaging of radiation heat loss
technique used to prevent or minimize large temperature oscillations. This
method is currently employed in only the implicit routines. The technique which
is origi;al with J. D. Gaski is based upon practical and computational con-
siderations. Solution of. numerous problems without large temperature

oscillations indicates the effectiveness of the approach.

The radiation averaging technique is relatively simple conceptually
and rather easily incorporated in the numerical solution routines. The com-
putational pattern is such that the diffusion nodes are encountered sequen-
tially. Let the encountered node be the ith node. A check is made for the

presence of a radiation coefficient, G ob,,, to the ith node. If one or

k- ij ,
more radiation connections is present, the radiation heat loss, (qi)rl’ from

the ith node is calculated baéed‘upon the pfevious temperature T

ik’ _
= 4 -
(qi)rl = ;:‘obij,n Ti,k (6.2-24)
where, i-= all radiation connections to node i

n = nth time-step

k = kth iteration

Using (qi)rl’ a second temperatﬁre (Ti,k)z’ is foynd as follows:

Ty, 102 = Qgup = @) V6 0 (6.2-25)
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where, i

— : P
Uum = &1 i,n + U4,n jil %ij,n T&,k+1 * j=i§1 %ij.n %i,k
z 4 P 4
+ jil Gbij,n Tj,k+1 + 3—§+1 Gbij,n ?j,k } (6.?—26)
—_ p
Gsum = C1 + jil aiJ,n {(6.2-27)

Note that in the evaluation of (Ti k)2, the damping factor DAMPD is not used.
R .
N 3 R .
Note further that Gsum does not contain ?Gbij,n Ti,k since itvls accounted for in
the radiation loss term, (qi)rl' 1

Now a second radiation heat loss based on (Ti k)2 is found,
>

- . 4 _
(a9),, = § 94,0 1,102 (6.2-28)
Equations (6.2-24) and (6.2-28) are then averaged,
(qi)ave = [(qi)r1.+ (qi)rzl/z.o (6.2-29)

This average radiation heat loss from an ith node is used in the

diffusion—node finite difference algorithm as follows,

Q. - (q)__)
R % . Sum i‘ave _
Ti,k+1 DD Ti,k + DN 7 (6.2-30)
sum
where, DN = DAMPD
Db = 1.0 - DN
(qi)ave = average radiation heat loss (equation 6.2-29)
'Gsum = Ci + § aij,n
qum = of the form shown by equation (6.2—26). The actual

expression depends upon algorithm. Equation (6.2-26)

is for the standard implicit method.

The reason behind the use of (qi)ave- is that if the initial

temﬁetature-Ti is too 1afge,-the heat loss from the ith node, (qi)rl

k
3
would then be too large. As a result the evaluation of (Ti k)2 with

- ’ )
(qi)rl would yield a temperatire that is too low. Thus, the averaging of

of (qi)rl and (qi)rZ would be much closer to the true heat loss from the
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ith node. If T is too smzll then (‘1'i k)? would be too large; the
L2 ,
averaging scheme still holds true. '

6.2.7 Acceleration of Convergence by Extrapolation Technique

Several of the SINDA numerical solution routines use an extrapola-
tion technique to accelerate convergence of the iterative procedure. The
extrapolation technique is used in the implicit routines CNBACK, CNFWBK,
and CNVARB for the iterative temperature solution of the diffusion nodes,
but is not used for the iterative temperature solutions of the arithmetic
nodes. The extrapolation method isvalsb used in the steady state routines
CINDSL and CINDSM for the iterative tgmperatﬁre}solution cf both the

diffusion and the arithmetic nodes.

6.2.7.1 Extrapolation Technigue

The extrapolation is based on a zero temperature difference con-
dition which is defined to be a point where the temperature change of a
particular node over two successive iterations is zero. The governing

equations are developed as follows:

Consider the temperatures of an ith node at three successive
iterations as shown in Figure 6.2-4a. TLet these temperatures, which are
assumed to be successively decreasing (or increasing), be denoted as,

T

i

k-2 Ti k-1 2094 Ty g

where, k is the present iteration
k-1 is the previous iteration

k-2 is two iterations before the kth iteration
By taking the differences,

ATy k-1~ Ti,k2 = Ti k1

AT T

1,k Yi,k-1 " Ti,k

and plotting these temperature differences as a function of iterations,

the iterative point of zero temperature difference can be found by linear

extrapolation as shown in Figure 6.2-4b. The corresponding expressibn for

the line is found by using the point, AT,
- - H]

(8T; o = 8T; 3) / (k=(k-1)), to yield,

catI=k and the slope,
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1,k

k-2 k-1 k
No. of Iterations, I

Figﬁre 6.2-4a, Temperature (ith) vs. No. of Iteratioﬁs
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Figure 6.2-4b. Témpera;ure Difference vs. No. of Iterations

T
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No. of Iterations, I

Figure 6.2-4c. Extrapolation of Temperature (ith) to New Value ‘

Figure 6.2-4, Method of Extrapolation,ta Accelerate'Convefgence
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Mi,z = Mi’k + (A‘l‘i,k - ATi,k—l) (I - k) (6.2-31)
where, I = iterations

Since at the zero temperature difference condition, AT = 0, the expression

: i I
for the extrapolated iterations, K, = (K - k), is found to be,
Kg = = ATy o/ T4y = AT )

Now, by extrapolating the line established by the temperatures, Ti k_1.and
. ?

(6 L} 2“32 )

Ti k £ the line I = K, as shown in Figure 6.2-4c, the extrapolated tempera-
Lk

ture Ti K is found. The expression is readily found to be,
3

Tr ™ T ™ Ty = Ty )T - ) (6.2-33)

Since I = Kand K-k = Ke’ equation (6.2-33) becomes,

T = Ti,k a+ Ke) -K (6.2-34)

1,K e Ti,k-1

6.2.7.2 Programming Considerations

Each applicable node is tested at the completion of each third
iteratior to determine if the extrapolation methed should be applied. If
K_ is calculated to be less than or equal to zero, extrapolation is neglected
s;nce the error function is diverging. If Ke is calculated to be greater
than zero, a new temperature is calculated based on equation (6.2-34); how=-
ever, to avoid problems associated with a nearly-zero slope of the line
representing the temperature difference vs. number of iterations relation-
‘ship (Figure 6.2-4b), Ke, is set to a number Km; otherwise, K.e could be a
very large number. For the implicit routines, CNBACK, CNFWBK, and CNVARB,
I(.m = 10. For the steady state routine CINDSL Km = 8 and for steady state

routine CINDSM a criterion based upon the maximum temperature is used.

6.2.7.3 Routines Using Acceleration of Convergence

SINDA numerical solution routines that employ the acceleration

of convergence features are:

CINDSL, CINDSM Steady state routines
CNBACK, CNFWBK, CNVARB Transient implicit routines

6.2.7.4 Comment on Acceleration of Convergence

Neilther an extensive study on the value of the acceleration

convergence feature has been made, nor has one been reported, but the
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. limited results presently available indicate that for the stead] state
‘routine CINDSL the number of iterations is redueed approximately 20%

Results are pot available for the implicit routines.

A study of the acceleration of convergence feature is made
difficult because the method is not a user option in the applicable SI&DA_
numerical solution routines. Thus, the user must be sufficiently versed
with the reutines in order to delete the acceleration of cpnvefgence;

feature.

6.2.8 Other Characteristics of the SINDA Numerical Solution Routines

6.2.8.1 Units

SINDA, as presently coded, requires that the temperatures must be
specified in degrees Fahrenheit (°F) since the conversion factor to obtain
degrees absolute is internally set at 460.0. This means that the units

must be consistent with °F (or °R). The execution routines as presently

|
- coded do not permit the use of other units. o

6.2.8.2 General Comments on Computational Features -

Many of the computational features such as radiation damping are
original with J. D. Gaski. No theoretical proofs are offered since a
practical "gut-feel" development was often used in lieu of a sophisticated
mathematical approach; the features, in general, appear to meet the
.intended objectives. It should be particularly noted that the numerical
solution routines are computationally similar; within a particular numerical
solution class explicit, implicit or steady state, the computational
similarity is even more pronounced. Yet on the other hand, similarity of

patterns are broken for no particular reason other than the programmer's
whim. ’ '
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6.3 Transient Explicit Solution Routines

SINDA explicit solution routine number six. These are identified

as follows:

CNFRWD Conditionally stable explicit forward difference.

Requires short pseudo-compute sequence (SPCS):

CNFRDL, Identical to CNFRWD except that the long pseudo-

compute sequence (LPCS) is required.

CNFAST Modified CNFRWD for accelerated forward differencing.

Requires short pseudo-compute sequence (SPCS).

CNEXPN Unconditionally stable explicit differencing using
exponential prediction.-

Requires short pseudo-compute sequence (SPCS).

CNDUFR Unconditionally stable explicit differencing using
DuFort-Frankel method.

i
i

Requires short pseudo-compute sequence (SPCS).

CNQUIK Uhconditionally stable explicit differencing using
a combination of half CNEXPN and half CNDUFR.

Requires short pseudo-compute sequence (SPCS).

A detailed description of each explicit routine is presented on
the pages to follow with heavy reliance upon the general description of

Section 6.2. A brief description of these routines is summarized first.

CNFRWD uses an explicit forward differencing algorithm and
requires the short pseudo-compute sequence (SPCS). The explicit method
is charactefized by computational simplicity and stability limitations.
Since the allowable time-step is govérned by the smallest time constant
of the network, care must be given in reducing the physical system to a
reasonable lumped—-parameter model. ‘Arithmetic-node temperatures are

calculated by "successive point" iteration.

CNFRDL is identical to CNFRWD except that CNFRDL requires the
long pseudo-compute sequence instead of the short pseudo compute sequence.
CNFRDL requires slightly less solution time than CNFRWD but the difference

is not significant; CNFRDL does require more core storage, however.
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CNFAST represents a medified CNFRWD with the modificatioms

/ intended to decrease the computational time. A user specified control
constant DTIMEL which contains the minimum time-step allowed is uséd as a
criterion for isolating those diffusion nodes that are to receive thé
steady state calculations. A large pocket of internally converted diffusion

nodes can present considerable accuracy problems.

CNEXPN wuses an unconditionally stable explicit method with the
intent to réduce computatiornal time at the expense of temperature accurécy.
i1f accuracy is an important consideration, another routine such as CNFRWD
would be a better choice. As a nqte,of interest, CNEXPN solutions tend to

lag in time the true solutioms.

CNDUFR uses the unconditionally stable DuFort-Frankel method
with the intent to reduce computational time by using time-steps greater
than those allowed with the conditionally stable explicit methods. Again
accuracy may be compromised. CNDUFR solutions tend to lead in time the '

true solutions.

CNQUIK uses half CNEXPN and half CNDUFR. Why? Since CNEXPN
solutions tend to lag in time»aﬁd CNDUFR solutions-tend to lead in time, a
combination may yield'better solutions. Preliminary results indicate that
CNQUIK solutions are more accurate than either CNEXPN or CNDUFR for the

same computational time.
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6.3.1 Subroutines: CNFRWG and CNFRDL

6.3.1.1 General Comments

Subroutines CNFRWD and CNFRDL are numerical solution routines

12, 1% of the

that use the forward finite difference explicit approximation
parabolic differential equation. CNFRWD and CNFRDL are identical except
that CNFRDL requires the short pseudo éompute sequence {SPCS) whereas
-CNFRDL requirés the long pseudo compuie sequenée (LPCS). The need for
both routines becomes apparent when it is understood that if a steady
state numerical solution routine is followed by a transient numerical
solution routine, both routines must have consistent PCS (LPCS or SPCS).
As a note of interest, each arithmetic node receives the long pseudo

compute sequence (LPCS) but this is done internally by the progran.

The forward finite difference expiicit method as used in CNFRWD
and CNFRDL is the conventional Euler ﬁethod that neither providgs a check
on the accuracy nor does it provide any scheme of correction once the |
temperature values are calculated except for the arithmetic nodes which
are reiterated NL¢¢P—times. The expiicit method is characterized by com~
putational simplicity and stability 1imitatioﬁs with thé temperature
error at any time point béing'of the»o'rder At, O(At), provided the sﬁability-
criterion is satisfied. For a rapidly .changing boundary condition, such’
as a heat source, there is no assurance that the calculated temperatures
are accurate during the transient period, particularly near the start of
the transient, even though the stability criterion is satisfied. Since
the allowable time step is governed by the smallest time constant of the
network, care must be given in reducing the physical system to a lumped-
parameter model. Nonlinearity due to the presence of thermal radiation
exchange or temperature-time varying coefficients can lead to numerical
solution difficulties; the presence of arithmetic nodes can also present
_ difficulties. These routines offer a number of control constants many
of which can be opfionally specified by the user to affect the rumerical

results.

Even with the experience gained through the use of these
routines, no realistic criteria can be stated except for the qualitative
guidelines indicated above. It is thus recommended that the user becomes

familiar with various control constants and their role. The presentation
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to follow is intended to provide the insrfuctional information.

6.3.1.2 Finite Difference Approximation and Computational Algorithm

The forward finite difference explicit formulation of the
lumped parameter heat balance equations was presented in Section 5.2.1.

For convenience, the expression is repeated here.

(T. . ~-T, ) p : P
c, —dmtl dam'_ . _ 3 s, _-T, )+ I ob,, (T -1
i At . i,n .7, Tij “i.m in o ij Y j,n  Ti,n)
; j=1 : j=1
(From equation 5.2-1 of Section 5.2.1)
wheze, i=1,2,...,N
T = constant, N< j <p
jon : -
p = total number of nodes
At = time-step
n = nth time-step
By letting G + ob ™ +T )T+ T, ) ti
y letting ij,n aij,n ¢ ij,n Y i,n i,n” " j,.,n T i,a”’ equation

(5.2-1) becomes,

P ,
i At B + 'El Gij,n (Tj3n _'Ii,n)' (6.3-1)

The algorithm as used in the subroutines for the diffusion nodes and for

the arithmetic nodes may be expressed as follows.

Diffusion Nodes

' _ At L '

Ti,n+1 N Ti,n + Cy [:qi,n + jil GiJ,n ‘TJ,n Ti,n)] (6.3-2)
- where, n = nth time-step -

At = time-step (refer to Section 6.2.4)

i=1,2,...,NND (number of diffusion nodes)
T = constant, (NﬁD + NNA) < j < p (NNA is the number of
arithmetié nodes and p is the total number of nodes)
b,. = may be optionally specified (refer to

i’ 94 aij’ ij
Tables 6.2-1 through 6.2-4).
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Arithmetic Nodes (if any)

i . P '
+ I G.. T, + 2 G,,. T,
(qi,n =1 Liem Jaktl B j=itl ij,n J,k)
= DD* T, . + DN* 4 =

ik P :
s Z
j=1
where, k = kth iteration loop; 1 = (NND + 1), (NND + 2),...,(NND + NNA)

’ci’qi’aij’bij = optionally specified (refer to Tables 6.2-1 - 6.2-4)

Tj g = constant, (NND + NNA) < j < p (NNA is the number of -
2

Ty (6.3-3)

Gij,n

arithmetic nodes and p is the total number of nodes)

DN = DAMPA (arithmetic node damping factor, refer to Section 6.2.3.2)
-DD = 1.0 - DN
: _ 4 2 _
€i3on = 23,0 T Pig,n Ty0 T T Ty T 100

(@ =k, if j > 1 and £ = ktl, if j < 1)

6.3.1.3 Comments on the Computational Procedure

The important steps of the computational procedure used in
subroutines CNFRWD and CNFRDL are indicated in Table 6.3-1. For a
‘detailed step-by-step computational description, the user must examine the
computer listings for CNFRWD and CNFRDL presented in Appendix A, but some
general computational details are given in Section 6.2.5.1. Both CNFRWD
and CNFRDL use essentially the same computational steps with the difference
occurring in the calculation of the diffusion-node temperatures as shown
in the flow chart of Figure 6.3~1; a’flow chart for the calculation of the
arithmetic-node temperatures is shown in Figure 6.3-2. A functional flow
chart of CNFRWD and CNFRDL is shown in Figure 6.3-3. The difference
between CNFRWD and CNFRDL is due to the use of the short pseudo-compute
sequence (SPCS) by CNFRWD and the use of the long pseudo-compute sequence
(LPCS) by CNFRDL. .

All diffusion—node temperatures are calculated by a two-pass
‘operation prior to the calculation of the arithmetic node temperatures.
On the first’pass the pseudo-compute sequence for the diffusion nodes is
addressed and the heat flow is calculated and the direction determined for
each conductor encountered; the appropriate heat flow and conductance
Summéfions are performed. Refer to Section 6.2.5.1 for more details on

the computational procedure.
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The stzbility criterion of each diffusion node is calculated
and the minimum value is placedin coutrol cdnstant CSGMIN. The time-step
used (stored in control constant DTIMEU) is:calculated,as'952 of CSGMIN
divided by control constant CSGFAC which is set at 1.0 unless specified
larger by the user. A "look ahead" feature is used when DTIMEU is calculated.
If one time-step will pass the output time point the time-step is set to
lie on the output time point; if two time-steps will pass the output time
point, the time-step is set so that the end of the two time-steps will lie
on the output time point. DTIMEU is checked against both DTIMEH and DTIMEL.
If DTIMEU exceeds DTIMEH,‘DTIMEﬁ is set equal to DTIMEH, and if DTIMEG is
less than DTIMEL, the "run" is terminated. DTIMEL is internally set to

. zero if not specified and DTIMEH is set to 1.0E+8 if not specified. The

‘maximum diffusion node temperature change over a time-step is placed in

control constant DTMPCC and is checked against the allowable diffusion node

temperature change stored in the optionally user specified control constant

. DTMPCA which is not spécified is set to 1.0E+8. If DIMPCC is larger than

DIMPCA, DTIMEU is shortened and the calculations repeated. Refer to

Section 6.2.4 for detailed procedure on time—step calculation.

» The user may iterate tﬁe arithmetic node calculations during a
time-step by specifying control constant NLPPP and adjust the solution by
the use of ARLXCA. The maximum arithmetic node temperature change over an
iteration is placed in control constant ARLXCC and is checked against the
arithmetic node temperature change criterion stored in ARLXCA. Satisfaction
of either NLP@P or ARLXCA terminates the iterative’process for that time-step.

If the arithmetic node iteration count exceeds NL@@P the results are retained

and computation proceeds without user notification. The maximum arithmetic

node temperature change over the time-step is stored in control conétant
ATMPCC and is checked against the allowable temperature change stored iﬁ
ATMPCA. 1If larger, the time-step is shortened and the calculation repeated.
The user may also specify the control constant DAMPA in order to dampen

possible oscillation due to nonlinearities.

6.3.1.4 Control Constants

Control constants @UTPUT and TIMEND (> TIMEP) must be specified
as indicated in Table 6.2-5 and described in Section 6.2.3.2; otherwise the

© "run" will terminate with an error message. The function of optiomally
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specified control constants ARLXCA, ATMPCA, BACKUP, CSGFAC, DAMPA, DTIMEH, A
DTIMEL, DIMPCA, NLO@PP, and TIMEP is described in Section 6.2.3.2. Note o
particularly that TIMEY msy be set negative and that NLOPP is set to one

if pot specified.

6.3.1.5 Error and Other Messages

'If control constants $UTPUT and TIMEND are not specified, the

following error message will be printed for each,

$UTPUT "Ng $UTPUT INTERVAL"
TIMEND "TIME STEP T@¢ SMALL"

The reason for the TIMEND error message is that a direct check on TIMEND
is not made; the resultant error message just happens to be a quirk in

the coding.

If the short pseudo-compute sequenée SPCS is not specified,
the error message will be,

"CNFRWD REQUIRES SHORT PSEUD@-COMPUTE SEQUENCE"

If the long pseudo-compute LPCS is not specified, the error

message will be,
"CNFRDL REQUIRES LONG PSEUDO-COMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient
(NDIM < (NND + NNA)), the message will be,

" LOCATIONS AVAILABLE"

Note that the number printed will be negative indicating the additional

storage locations required.

If the time~step used is less than the time-step allowed
(DTIMEL) which may be optionally specified by the user, the message will be,

"TIME STEP T¢¢$ SMALL"
If CSGMIN < 0, the message printed will be,
"CSGMIN ZER$ or NEGATIVE"

.Checks on the control constants, the pseudo-compute sequence and-
the dynamic storage allocation are made in the following sequence with the

"run" terminating if a single check is not satisfied,
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o

$UTPUT, pseudo-compute sequence, dynamic storage locations

It should be particularly noted that no message is printed if
ARLXCA is not satisfied with NL@@P iterations; ARLXCA and NLO@P are

optionally specified control constants.

6 - 50



9.

10.

11.

12.

13.
14.

Table 6.3-1. Basic Computational Steps for CNFRWD ard CNFRDL

Specificati@n of control constants (all control constants are pre-set to
zero). Control constants $UTPUT and TIMEND must be specified. SPCS is
required for CNFRWD and 1PCS for CNFRDL. (Refer to Table 6.2-4 for
pominal values and Section 6.2.3.2 for description.)

Sufficiency check on dynamic storage.
diffusion nodes and NNA = arithmetic nodes).

Requirements = NND + NNA (NND =

Setting and/or calculation of tlme—step, At. (Refer to Section 6.2.4

for detailed procedure.)

Setting of source and diffusion node dynamic storage locations at zero.
Calling of VARIABLES 1. (Refer to Section 6.2.2.2.)
Checking of RBACKUP. (Refer to Section 6.2.3.2.)

Calculation of diffusion-node temperatures. (Refer to Section 6.2.5.1
for description and to flow chart of Figure 6.3-1.)

Diffusion~node temperatures are calculated by using: (refer to Section

6.3.1.2.)
Tynr = Ty n 74075 5
where, AT, . [q. +
i,p C. i,n
im

P .
Z Gi. (T. a " Ti n)]
j=1 J,0 Js s

Erasure of all temperature calculations for latest time-step if allow-

able temperature change criterion DTMPCA is not satisfied and recalcula-
tion of temperatures with reduced time-step.

Calculation of arithmetic-node temperatures; if the number of iterations
equals NL@PP the temperatures are retained without user medification.

(Refer to Section 6.2.5.1 for description and to flow chart of Figure 6.3.2)

Erasure of all temperature calculations for latest time-step if allowable
temperature change criterion ATMPCA is not satisfied and recalculation

of temperatures with reduced time-step.

Setting of BACKUP to 0.0 and the calling of VARIABLES 2.

If BACKUP is nonzero, temperatures are re-set to former values and the
computational procedure repeated.

Advancing of time, checking of time to print, and the printing at the

output interval.
Calling of @UTPUT CALLS.

Checking for- problem end-time stored in user specified control constant.

TIMEND.,
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Figure 6.3-1. QSUM and GSUM for "Block" Diffusion-Node
Temperature Calculation, CNFRWD and CNFRDL
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{ CNf;WD or CNFR§§:)
I

i Check and set comntrol constants

£
! Initialize pointers
] Tnitialize and adjust time step - . e
¥

Set source locations to zero, initialize
XSPACE, call VARIABLES 1

2e

ﬁpdate Ci, 9i Gy; - compute Qgup
and Ggy, for each different node

]

Compute CSGMIN, compute new diffusion node temperatures
by forward difference method, compute DIMPCC

Check and adjust
. time—step

i .

Undo the diffusion—ﬁode Update qi & Gy once each time-step

temperature computaticn § = { time-step Compute arithmetic-node temperatures
A ’ ‘ by successive point iteration.

Compute ATMPCC

. Yes
< ATMPCC $K ™ '

Set time-step

Call VARIABLES 2

If time to print f.gged Update time
call PUTCAL

Figure 6.3-3. . Functional Flow Chart for CNFRWD and CNFRDL
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6.3.2 Subroutine: CNFAST

6.3.2.1 General Comments

Subroutine CNFAST, which requires the short pseudo compute sequence
(SPCS) represents a modifiéd CNFRWD with the modifications intended to V
decrease the computational time. Use of CNFAST requires a user specifica-
tion of control constant DTIMEL which represents the minimum time-step
allawed in addition to contrcl constant @$UTPUT. With minimum computational
‘time and adequate temperature values as the objective, the computational
procedure is simplified. A number of checks on control constants are
eliminated and temperature nodes with CSGMIN less than the allowable time-

step, DIIMEL, are calculated using the steady state equations.

Although experience on the use of CNFAST is rather limited at this
time, it is clear that the user specified DTIMEL should be sufficiently
small that only a small number of the diffusion nodes should receive the
steady state eqﬁations. These steady state equations are computed only once
during a time-step and thus are not treated computationally the same as the
other user-specified arithmetic nodes. A large pocket of'internally con=-

verted diffusion nodes would lead to large temperature inaccuracies.

6.3.2.2 Finite Difference Approximation and Computational Algorithm

The finite difference expressions for CNFAST are the same as those
indicated in Section 6.3.1.2 for subroutines CNFRWD and CNFRDL, but the

application of these equations in the Computation procedure is different.

Diffusion Nodes

If the user specified control constant, DTIMEL, which represents
the maximum time-step allowed as specified by the user is less than or equal

to CSGMIN, the diffusion node temperature is calculated as,

| _ A :
Ti,n+1 - Ti,n'+ Ci [qi,n + jzl Gij,n (Tj,n Ti,ni] 6.3-4)
where, At = time-step (refer to Section 6.2.4); n = nth time-step
C;59;5a;55by; = optionally specified (refer to Tables 6.2-1 - 6.2-4)
i = 1,2,...,NMND (of diffusion nodes with DTIMEL < CSGMIN)
Tj 4 constant, (NND + NNA) < j < p (NNA is the number of
2 - .
arithmetic nodes and p is the total number of nodes)
- 2 2 ‘ ‘
Gij n aiJ s * cbij a1 (Tj > * Ti9n) (Tj Y * Ti:n)
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If DTIMEL > CSGMIN, the time-step is set at DTIMEL and the

 }éiffusion node temperature calculated with no iterations as,

P ,
G,n ¥t j§1 4,0 Tyon ~ Ti,n)
L G
3=1 ij,n
where, n-means the nth time-step

i=1,2,...,N\ND (number of diffusion nodes with DTIMEL > CSGMIN)‘

Arithmetic Nodes (if any)

The arithmetic-node temperatures are calculated in the same manner

as in CNFRWD (Sectién 6.3.1.2) or refer to Section 5.2.3 for finite difference’
algorithm.

6.3.2.3 Comments on the Computational Procedure

The important steps of the computational procedure used in
subroutine CNFAST are indicated in Table 6.3-2 and a functional flow chart
is shown in Figure 6.3-4. For a @etailed computational description, the
user should examine the computer listing for CNFAST in Appendix A; but some
general computational details are presented in Section 6.2.5.1. The compu-.
tational procedure is similar to the one used in CNFRWD with the majdr‘
difference being the use of DTIMEL which represents the user specified
minimum time-step allowed. The time-step calculations stored in DTIMEU
proceed exactly as in CNFRWD until the chegk with DTIMEL is made. If DTIMEU
(CSGMIN of a node) > DTIMEL, the diffusion node temperature calculation is
identical to CNFRWD. If DTIMEU (CSGMIN of a node) < DTIMEL, the diffusion

node receives the steady state calculation.

Control constants DIMPCA which contains the allowable diffusion-
node temperature change and ATMPCA which contains the arithmetic-node
temperature cﬁﬁnge are not checked in CNFAST. Thus time—steps'are not
shortened and temperature calculations repeated. The remainder of the

computational procedure follows those of CNFRWD (Section 6.3.1.3).

6.3.2.4 Control Constants

Control constants DTIMEL, $UTPUT and TIMEND CGTIME®) must be
o speéified as indicated in Table 6.2-5 and described in Section 6.2.3.23
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otherwise the "run" will terminate with an error message. The functibn of
optionally specified control ccnsténts ARLXCA, BACKUP, DAMPA, DTIMEH, NL@@P
and TIME§ is described in Section 6.2.3.2. As mentioned before in a
previous paragfaph, the user should take considerable amount of caution

in specifying DTIMEL in order to prevent large pockets of nodes that receive
the steady state eduation withoutiréiteration. Note also that TIME@

.may be set negative and that NLOPP is set to,one if not specified.

6.3.2.5 Error and Other Messages

If control constants DTIMEL, @UTPUT and TIMEND are not specified,

the following error message will be printed for each,

DTIMEL "Ng DTIMEL"
@UTPUT “Ng @UTPUT INTERVAL"
TIMEND no message

A direct check on TIMEND is not made; an indirect message is printed for
the other explicit routines but is not output for CNFAST.
If the short pseudo-compute sequence SPCS is not specified, the

error message will be,
"CNFAST REQUIRES SHORT PSEUDO-COMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient (NDIM < NND),
the message will be,

" LOCATIONS AVAILABLE"

Note that the number printed will be negative indicating the additional

storage locations required.

If CSGMIN < 0, the message printed will be,
"C/SK ZER$ or NEGATIVE"

Checks on the control comstants, the pseudo -compute sequence .
and the dynamic storage allocation are made in the foliowing sequence,
with the run terminating if a single check is not satisfied,

¢uTPUT, DTIMEL, pseudo-compute sequence, and dynamic

- storage locations.

It should be particularly noted that no message is printed if
ARLXCA is not satisfied with NL@PP iterations; ARLXCA and NL@PP are
optionally specified control constants.
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B /
s

9.
10.

12.

Table 6.3-2. Basic Com@utational Steps for CNFAST

Specification of control cpnstants. ‘Control constants DTIMEL, @UTPUT
and TIMEND must be specified. SPCS is required for CNFAST. {Refer to
Table 6.2-5 for values and Section 6.2.3.2 for descriptions.)

Sufficiency check on dynamic storage.  Requirements\= NND (MND =
diffusion nodes).

Setting and/or calculation of tlme—step, At. (Refer to Section 6.2.4
for detailed procedure.)

Note that initial time~step equal DTIMEL and subsequent time~step is the
larger of CSGMIN or DTIMEL.

Setting of source and dlffu51on node dynamic storage locations to zero.

Calling of VARIABLES 1. (Refer'to Section 6.2.2.2 for description.)

. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)

Calculation of diffusion-node temperatures. (Refer to Section 6.2.5.1
for description.) Calculation differs from the other explicit routines,

‘'since diffusion nodes with CSGMIN less than DTIMEL receive steady state

calculation (refer to Section 6.3.2.2.)

If DTIMEL < CSGMIN, the node temperatﬁre is calculated as,

, At p ; :
T =T, +—— | X G,. (T, ~-T. )+q
i,n+l in Ci [j=,1 1;,:1 j,n i,n i,n
If DTIMEL > CSGMIN, the node temperature is calculated using the steady
state expression,

P
4.0 + jzl Gij’n (Tj’n - Ti’n)
Ti,n+1 - P
I G,
j=1 ij,n

Calculation of arithmetic-node temperatures if the number of iterations
equals NL@@PP the temperatures are retained without user notification.
(Refer to Section 6.2.5.1 for details.) .

Calling of VARIABLES 2. (Refer to Sectlon 6.2.2.3 for description.)

Advancing of time, checking of time to print, and the printing at the
the output interval.

Calling of PUTPUT CALLS.

Checking for problem end-time stored in user specified control constant
TIMEND v
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Check and set control constants

¥

Initiaslize pointers

¥

Initialize and adjust time-step S 2

1

' Set source locatlons to zero, 1n1t1allze
XSPACE, call VARTALBES 1

Update Cj, g4, Gi; compute Qgyp '
and Ggyp for each diffusion node '
!

Compute CSGMIN )

If DTIMEL < CSGMIN compute diffusion-node temperature by o
explzczt difference method;

If DTIMEL > CSGMIN compute dlffu51on—node temperature by
steady state equatlon.

4

Updace g and Gy once each time-step; compute
arithmetic—-node temp. by successive point iteration

i
Call VARIABLES 2
Y
Update time
K
If time to print
call QUTCAL

No

TIMEND

Yes

Creturn)

Figure 6.3-4.  Functional Flow Chart for CNFAST
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6.3.3 Subrouéine: CNEXPN

\
i

6.3.3.1 General Comments

Subroutine CNEXPN is an explicit routine based upon the exponential

prediction method;!s 7

the wmethod being unconditionally stable permits any
size time-steps and requires the shortvpseudo-compute sequence (SPCS). An
infinite time~step reduces the transient equation to a steady state one.
Although the method is unconditionally stable, stability should not be con-
fused with accuracy. Comparison of several numerical methods, including the

exponential approximation, is given in Reference 17.

If accuracy is an important consideration, time-steps should not
be larger than those taken with the standard explicit method such as used
in CNFRWD. If high accuracy is not an important consideration, considerable
savings in computational time can be affected with the use of a large time-
step. It should be noted that the same savings in computational time may be
possible with the implicit routines. As another note of interest, CNEXPN

solutions have a tendency to lag in time the true temperatures.

6.3.3.2 Finite Difference Approximation and Computational Algorithm

Diffusion Nodes

The expression for the numerical methed used in subroutine CNEXPN
for solving the diffusion—node temperatures may be derived from the heat

balance equation (5.1-6).

4 1[ Eoa, (X -1)+ I c “)] (
=7 j9; t a,, (T, - T,)+ I ob,, (T, - T equation
dt Ci i j=1 ij j i =1 ij j i 5.1-6 of
Section 5)
i=1’2,'o.c,N
13 = constant, N < izlp
If Gij = a4y + Gbij (ig + Ti)(Tj + Ti) equation (5.1-6) becomes,
de_ 1[ lz): ( )] © 6
—==-=lq. + G,, (T, - T .3-
dt Ci i j=1 ij 3 i

i = 1’2’...’N

T5 = constant, N < j < p
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If we further let G and Tj be inwvariant with time and

temperature, equation (6.3-6) may be integrated rather easily to yield,

4
oL,
—anAt qi,n ! ~E
. = o - -
i,n+l Ti,n €

e

T

1 Gij,n Tj,n -anAt
l-e (6.3-7)

.G.. ‘
1 ij.n

i Mo

i

where, n = nth time-step; i =1, 2, ..., NND (number of diffusion nodes)

Ci’qi’aij’bij = may be optionally specified (refer to Tables 6.2-1 - 6.2-4)

15 = constant, (NND + NNA) < j < p (NNA is the number of arithmetic
n .
’ nodes and p 1s the total number of nodes)

. .
zZ Gi' a
4o i
o =L
n C,
‘ i,n
At = time-step (refer to Section. 6.2.4)
_ 2 2 )
®,0 7 2,0 F Prgn Tn T 0 Fan T

Computationally equation (6.3-7) is applied to the diffusion nodes.
It should be noted that the form of equation (6.3-7) represents a "block"

change in temperatures since the evaluation of T, is based upon T, .
i,n+l i,n

Arithmetic Nodes (if any)

Aiithmetic-nodé,temperatures are calculated in the same manner as
in CNFRWD (Section 6.3.1.2) or refer to Section 5.2.3 for finite difference
algorithm.

6.3.3.3 Comments on the Computational Procedure

The important steps of the computational procedure used in sub-
routine CNEXPN are indicated in‘Table 6;3-3 and a functional flow chart is
shown in Figure 6.3-5. A detaiied cbmputatioﬁalyprocedure requires the
examination of the CNEXPN computer listing which is presented in Appendix A
but some general computational details are given in Section 6.2.5.1. The
computational process of subroutine CNEXPN is essentially identical to
CNFRWD with the difference being the finite difference expression used for
the calculation of the diffusion nodes and the time-step which is calculated
as CSGMIN*CSGFAC in lieu of CSGMIN/CSGFAC. The."look ahead" feature for

6 - 61



B time-step calculation as well as a check with DTIMEH, DTIMEL and DIMPCA is
- identical to CNFRWD. Temperatures of arithmetic nodes are calculated after
the diffusion nodes and utilize NL¢¢P, ARLXCA, and DAMPA in exactly the
~ same way as CNFRWD. The verbal flow description of CNFRWD (Section 6.3.1.3)

applies here except for the differences indicated above.

6.3.3.4 Control Constants

Control constants @UTPUT and TIMEND (> TIME¢) must be specified
as indicated in Table 6.2-5 and described in Section 6.2.3.2; otherwise
the "run" will'terminaté with an errbr message. The function of optionally
specified control constants ARLXCA, ATMPCA, BACKUP, CSGFAC, DAMPA, DTIMEH,
DTIMEL, DTMPCA, NL@9P, and TIMEY is described in Section 6.2.3.2. The user

should take particular care in the selection of CSGFAC since too large of
a time-step would lead to grossly inaccurate temperatures even though the
solution is stable. Note also that TIMES may be set negative and that
NLGPP is set to one if not specified.

6.3.3.5 Error and Other Messages

If control constants QUTPUT and TIMEND are not specified, the

following error message will be printed fbr each,

@UTPUT "N§ @UTPUT INTERVAL"
TIMEND "TIME STEP T@¢¢$ SMALLY

The reason for the TIMEND error message is that a direct check on TIMEND
is not made; the resultant error message just happens to be a quirk in the
coding.

If the short pseudo-compute sequence SPCS is not specified, the

error message will be,
"CNEXPN REQUIRES SHORT PSEUDO-COMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient
"NDIM < (NND + NNA)), the message will be,

" LOCATIONS AVATILABLE"

Nbfe that the number printed will be negative - indicating the additional

storage locations required.
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If the time-step used is less than theAtime-step allowed
(DTIMEL) which may be optionally specified by the user, the message will be,

“rIME STEP T@¢ SMALLY
If CSGMIN < 0, the message printed will be,
"CSGMIN ZER@ or NEGATIVE"

, Checks on the control constants; the pseudo—-compute sequence and
the dynamic storage allocation are made in the following sequence with the

run terminating if a single check is not satisfied,
$UTPUT, pseudo-compute sequence, dynamic storage locations.

It should be particularly noted that no message is printed if
ARLXCA is not satisfied with NL@PP iterations; ARLXCA and NL@¢P are

optionally specified contrcl constants.
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9.

104.

11.

12,

13.
14,

Table 6.3-3. Basic Computational Steps for CNEXPN

Specification of control constants. Control constants $UTPUT and TIMEND
must be specified. SPCS is required for CNEXPN. (Refer to Table 6.2-5
for values and Section 6.2.3.2 for description.)

Sufficiency check on dynamic storage. Requirements = NND + NNA (NND =
diffusion nodes and NNA = arithmetic nodes).

Setting and/or calculatlon of tlme—step, At. (Refer to Section 6.2.4
for detailed procedure.) Calculated time-step = 0.95 * CSGMIN * CSGFAC.

Setting of source and diffusion node dynamic storagé locations to zero.
Calling of VARIABLES 1. (Refer to Section 6.2.2.2 for description.)
Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)

Calculation of diffusion-node témperatures. (Refer to Section 6.2.5.1
for description.)

Diffusion-node temperatures are calcula;ed by using (refer to
Section 6.3.3.2),

P
T =T, e % + j : 1-e ™ %
i,n+l i,n P - :
LG
ij,n
j j’
where, P
X Gij a
- H
a 3 j——l'——-—-——
n C
i.n

Erasure of all temperature calculations for latest time-step if allowable
temperature change criterion DTMPCA is not satisfied and recalculation
of temperatures with reduced time-step.

Calculation of arithmetic-node temperatures. If the number of iterations
equal NL@@¢P, the temperatures are retained without user notification

Erasure of all temperature calculations for latest time-step if allowable
temperature change criterion ATMPCA is not satisfied and recalculation
of temperatures with reduced time-step.

Calling of VARTABLES 2 and checkiﬁg of BACKUP. (Refer to Section 6.2.2.3
and 6.2.3.2 for description.)

Advancing of time, checking of time to print, and the printing at the
output interval.

Calling of @UTPUT CALLS..

Checking for problem end time stored in user specified control constant
TIMEND.
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CNEXPH

E Check and set control constants

Y

Initialize pointers

Y

= Initialize and adjust time-step j-

i

XSPACE, call VARIABLES 1

Set source locations to zero, initialize

Ggym for each diffusion node

Update Cis 9i» Gy, compute Qgyy and

¥

Compute CSGMIN; compute diffusion-node températures

by exponential prediction method; compute DIMPCC.

Check and adjust
=t time-step.

g

¥ Yes
Undo diffusion-node

-4 temperature calculations

Shorten
time-step

4

Set time—steﬁ

Update q4 & Gy once each time-step
Compute arithmetic-node temperatures
by successive point iteration

1

Compute ATMPCC

No Yes

Yes

ATMPCC o

L

Call VARIABLES 2

If time to print

rt~=4 Update time

Figure 6.3-5.

call @UTCAL

Functional Flow Chart for CNEXPN
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6.3.4 Subroutine: CNDUFR

6.3.4.1 General Comments

Subroutine CNDUFR is an explicit numerical solution routine that
uses an unconditionally stable DuFort—Frénkelfmethod.g’ 12,17 The
DuFort~Frankel method replaces the present temperature of the node being
operated on by the average of future and past temperatures in ;he forward
differencing equation. In subroutine CNDUFR the present temperature of the

node being operated on is replaced by a time-weighted average of future and

past temperatures. CNDUFR requires the short pseudo-compute sequence (SPCS)._

The intent of an unconditionally stable routine such as CNDUFR
is the reduction oﬁ computational time by using time-steps greater than
those allowed with the conditionally stable explicit methods as constrained
by the stability criterion. Howéver, less accuracy can be expected with a
vlengthened time-step. The time-step controlied with control constant CSGFAC
. represents a user decision that is difficult-and must be aided by a trial

and error procedure.

Examination of several CNDUFR solutions reveals a tendency to

lead in time the true temperatures.

6.3.4.2 Finite Difference Approximation and Computétional Algorithm

Diffusion Nodes

The DuFort-Frankel explicit finite difference expression®> 12, 17

for calculating the diffusion-node temperatufes‘may be readily determined

as follows:
Using the standard explicit finite difference expreSsion,r_

Ty one1 ™ Tin) P

i At = qi,n +

c ~ T, ) (6.3-8)

2 Gi‘ n (T n i,n
j""l‘,J’ 3> ’

i = 1,2,..-,N

Tj,n constant, J<p

letting the present temperature,,,Ti n’ be replaced by the average of future
, i, ;

temperature, T, ' :
per > T3 e and past temperature, Ti,n—l’

[ W Ml o
i,n 2

(6.3-9)
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where, Ati = Ati+l’ i=1,2,...,M (equalitime-steps)

and defining,

Ei = Ci/At (refer to Section 6.2.4 for discussion on At) (6.3-10)

equation (6.3-8) can be expressed as,

T

1,01 ~ = 4 B ¢

@T, .-T )

Ci,n Ti,n—l +2 qi,n + e Gij,n j,n  “i,n-1

(6.3-11)

i=1,2,...,N

In CNDUFR the present temperature, Ti o’ of equation (6.3-8) is replaced
. . H]

by a weighted average of future temperature,

T
Ti,n
where, Atn—l
At
n
Let
Tn—l =
T =
n

Ti,n+1’ and past temperature,

{.n-1° The weighting is based on unequal time-steps.
>

) e, Ti,n 4 F ot T.i,n-l) (6.3-12)
At + At : )
n-1 n :
=t -t 4 (past timefstep)
= tnﬁl - tn (present time-step)
At
n-1 '
B, + B, (6.3-13)
n-1 n
Atn
B, + Be. (6.3-14)
n-1 n

"Equation (6.3-8) becomes,-

— P P ,
- + q.
"a Ti,n-1 (Ci,n X Gij,n) L Cin Tt Y
T - =1 =1 (6.3-15)
i,nt+l _ (_; P )
C -T c. - I G,,
i,n n-1 \ "i,n j=1 ij,n
where, i=1,2,...,NND (number of diffusion nodes)
IB a= constant, (NND + NNA) < j < p (NNA is the number of arithmetic
, . ,
nodes and p is the total number of nodes)
o 2 2 .,
Gij st B aij s + Ubij >l Tj s + Ti:n) (Tj‘:n +,Tisn) .
Ci’qi’aij’bij = may be optionally specified (refer to Tables 6.2-1 - 6.2-4)
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In CNDUFR, equation (6.3-15) is applied to the diffusion nodes -
with the computational procedure being a "block" change in temperature from

ze time~step to another.

Avithmetic Nodes (if any)

Arithmetic-node temperatures are calculated in the same manner
as in CNFRWD (Section 6.3.1.2) or refer to Section 5.2.3 for the finite
difference algérithm. |

6.3.4.3 Comments on the Computational Procedure

The important steps of the computétion procedure used in sub-
routine CNDUFR are indicated in Table 6.3-4 and a functional flow chart
is shown in Figure 6.3-6. A computer listing of CNDUFR is found in
Appendix A but some general computational details are given in Section 6.2.5.1.
The computational procedure for CNDUFR follows the CNEXPN computational
paﬁtern, but with the temperatures of the diffusion nodes caiculated by :
the DuFort-Frankel method'of the exbonential prédiction method. Ancther
significant difference is that CNDUFR must prdvide for two sets of past
temperatures which are required for DuFort-Frankel algorithm; two time-
steps for consecutive time-step calculations are also required. Otherwise,
checks and control constant use are iaentical.to CNEXPN. Thus, the verbal
flow description of Section 6.3.1.3 applies directly except for the

differences indicated above.

6.3.4.4 Control Constants

o Control constants @UTPUT and TIMEND (> TIME@) must be
specified as indicated in Table 6.2-5 and described in Section 6.2.3.2;
otherwise the "run" will terminate with an error message. The function
of optionally specified control constants ARLXCA, ATMPCA, BACKUP, CSGFAC,
DAMPA,-DTIMEH, DTIMEL, DTMPCA, NL@gP, and TIMEP is described in

Section 6.2.3.2. The user should take particular care in the selection
" of CSGFAC since too large of a time-step would lead to grossly inaccurate
temperatures even though the solution is stable. Note also that TIME@

may be set negative and that NL@@P is set to one if not specified.
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6.3.4.5 Error and Other Messages

If control constants ¢UTPUT and TIMEND are nct specified, the
following error message will be printed for each,

@UTPUT . YN$ GUTPUT INTERVAL"
TIMEND "TIME STEP T@¢ SMALL"

The reason for the TIMEND error message is that a direct check on TIMEND
is not made; the resultant error message just happens to be a quirk in

the coding.

If the short pseudo-compute sequence SPCS is not specified, the

error message will be, ‘
"CNDUFR REQUIRES SHORT PSEUDO-COMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient
(NDIM < (2*NND + NNA)), the message will be,

" LOCATIONS AVAILABLE"

Note that the number printed will be negative indicating the additional

storage locations required.

If the time-step used is less than the time-step allowed (DTIMEL),
which may be optionally specified by the user, the message will be,

"rIME STEP T@¢ SMALL"
If CSGMIN < 0, the message printed will be,
"CSGMIN ZER$ or NEGATIVE"

Checks on the control constants, the pseudo-compute sequence and
the dynamic storage allocation are made in the following sequence with the

run‘terminating if a single check is not satisfied,
$UTPUT, pseudo-compute sequence, dynamic storage locaticns

It should be particularly noted that no message is printed if
ARLXCA is not satisfied with NL@PP iterations; ARLXCA and NL@@P are
optionally specified control constants. V
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Table €.3~4.  Basic Computational Steps for CNDUFR

1. Settinglbf control constants to nominal values. Control constants
$UTPUT and TIMEND must be specified. SPCS is required for CNDUFR.
(Refer to Table 6.2-5 for values and Section 6.2.3.2 for description.)

2. Sufficiency check on dynamic storage. Requirements = 2*NND + NNA
(NND = diffusion nodes and NNA = arithmetic nodes).

3. Setting and/or calculation of time-step, At. (Refer to Section 6.2.4
for detailed procedure.) Calculated time~step = 0.95*CSGMIN*CSGFAC.

4, Setting of source and diffusion node dynamic storage locations to zero.
5. Calling of VARIABLES 1. (Refer to Section 6.2.2.2 for description.)
6. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)

7. Calculation of diffusion-node températures. (Refer to Section 6.2.5.1
for description.)

Diffusion-node temperatures are calculated by using (refer to
Section 6.3.4.2), e

P : P
Tn Ti,n-l (Cl,n -z 1J,n) 4'.§ Glj,n jHn ql,n
T j=1 q=1
i,nt+l __ P
C - C - I G,,
i,n n-1 ( i,n j=1 1J,n)
where, At
r  =—— 101
n-1 At + At
n-1 n
At
T = e
n At + At
n-1 n

8.. Erasure of all temperature calculations for latest time-step if
allowable temperature change criterion DIMPCA is not satisfied and
temperature recalculation with reduced time-step.

9, Calculation of arithmetic-node temperatures; if the number of itera-
~ tions éequal NL@$@P, the temperatures are retained without user
potification (refer to Section 6.2.5.1 for details).

10. Erasure of arithmetic-node temperatures for latest time-step if allowable
temperature change criterion ATMPCA is not satisfied and temperature
recalculation with reduced time—step.

11. Calling of VARIABLES 2 and checking of BACKUP. {(Refer to Section 6.2.2.3
and 6.2.3.2 for description.)

12. Advancing of time, checking of time to print, and the printing at the
output interval.

13. Calling of @$UTPUT CALLS.

14. Checking for problem end time stored in user specified control constant
TIMEND.
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Check and set control constants

i ]

Initialize pointers

¥

poted  Initialize and adjust time-step

Y

Set source locations to zero, initialize
XSPACE, call VARTIARLES 1

s

Update Cj, g4, Gg, compute Qgu, and
G um for each diffusion node

¥

Compute CSGMIN, compute diffusion-node temperatures

- by DuFort-Frankel method; compute DIMPCC

Check and adjust
time-step

* .

Undo diffusion-node o Shorten Update q4 & Gy once each time-step.
temperature computations time-step Compute arithmetic-node temperatures
: p by successive point iteration.
Compute ATMPCC
No

Set time-step : ‘ oy

Yes. —
BACKUP # 0 > Call VARIABLES 2

No

If time to print
call @UTCAL

g~4 [Ipdate time

Figure 6.3-6.

Functional Fiovahart for CNDUFR
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6.3.5 Subroutine: CNQUIK

6.3.5.1 General Cdmments

Subroutine CNQUIK is a numerical sclution routine that uses an
algorithm composed of half DuFort-Frakel methodg’ulzil7 and half »
-exponential prediction method.l> 17 CNQﬁIK requifes the short pseudo-
compute sequence (SPCS); characteristicé.of subroutines CNDUERAand_CNEXPN,
as described in'Section'6.3.3 and 6.3.4, also apply to CNQUIK.

Why CNQUIK? Examination of CNDUFR and CNEXPN solutions reveals
that CNDUFR has a tendency to yield tempefatures which lead the true tempera-
tures, whereas CNEXPN has a tendency to lag the true temperatures. Thus,
it was theorize&-that é combination of CNDUFR and CNEXPN should yield a
more accurate solution than either one. Preliminary results indicate that
CNQUIK is more accurate.than either CNDUFR or CNEXPN with approximately
the same solution time. it can also be theorized that a more accurate
combination of the DuFort—Frankel and exponential prediction is probably
possible than the half and half used in CNQUIK. However, a detailed

study will be required before a realistic evaluation of CNQUIK can be made.

6.3.5.2 Finite Difference Approximation and Computational Algorithm

Diffusion Nodes

Subroutine -CNQUIK uses a numerical solution algorithm composed
of half DuFort-Frankel and half exponential prediction. That is the
temperature of the diffusion nodes is calculated by using,

Tinil = (Tcnnu;m + ?cmzmm) /2.0 (6.3-16)

_ Py, P | '
T Ty n-1 (Ci,n - B Gij,n) *rCha Yt b

T = j=1 j=1
CNDUFR . v _ P
Ci’n ¢! -,Tn_l) + I Gij,n
(equation 6.3-15 of Section 6.3.4.2) -
P . ‘
oA Yot E 15,0 Ty,nf o A8
T =T, e + i=1 1-e ®
CNEXPN “i,n P \
G
§=1 ij,n

(equation 6.3~7 of Section 6.3.3.2)
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n = nth time-step -
i=1,2,...,NND (number of diffusion nodes)

s i ———

Tj o~ comstant, (NND + NNA) < j < p (NNA is the number of
. )
arithmetic nodes and p is the total number of nodes)
P
z Gij n
o == 7
n C
i,n
G,. =a, _+0b,, (0 +T° )T, +T, )
ij,n ij,n ij,n i,n jsm in jon
T o T =
= : 4= ; -
o At 4+ At n-1 Atn—l + Atn

1 9 aij’ bij = optionally specified (refer to Tables 6.2~1 - 6.2-4)

Ci = Ci/At (refer te Section 6.2.4 for discussion of At)

Arithwetic Nodes (if any)

Temperatures of arithmetic nodes are calculated in the same manner
as in CNFRWD (Section 6.3.1.2) or refer to Section 5.2.3 for the finite
difference algorithm.

6.3.5.3 Comments on the Computational Procedure

The important steps of the computational procedure used in sub-
routine CNQUIK are indicated in Table 6.3-5 and a functional flow chart is
shown in.Figure 6.3-7. A computer listing of CNQUIK is found in Appendix A,
" General computational details are given in Section 6.2. The computational
'procedure for CNQUIvaollows CNEXPN or CNDUFR with the diffusion-node
temperatures calculated with the half DuFort~Frankel and half exponential
prediction algorithm being the only difference. Arithmétic-node-tempera—
tures are calculated in the same manner as the other SINDA explicit
routines. Note that the time~-step is célculated as CSGMIN*CSGFAC and checks
are the same as CNEXPN or CNDUFR. Thus, the verbal flow description of
Section 6.3.1.3 applies directly except for the differences indicated

above.
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6.3.5.4 Control Constants

Control constants PUTPUT and TIMEND (> TIME@) must be specified

" as indicated in Table 6.2-5 and described in Section 6.2.3.2; otherwise
the "run" will terminate with an error message. The function of optionally
specified control constants ARLXCA, ATMPCA, BACKUP, CSGFAC, DAMPA, DTIMEH,
DTIMEL, DIMPCA, NLY@P, and TIME§ is described in Section 6.2.3.2. Again,
caution must be exercised in the selection of CSGFAC since tco large of a
time—steﬁ would lead to grossly inaccurate temperatures even though the
solution is stable. Note also that TIME$ may be set negative and that

NLOPP is set to one if not specified.

6.3.5.5 Error and Other Messages

If control constants @UTPUT and TIMEND are not specified, the

following error message will be printed for eaéh,

$UTPUT "Ng QUTPUT INTERVAL"
TIMEND "TIME STEP T¢@ SMALL"

The reason for the TIMEND error message is that a direct check on TIMEND
is not made; the resultant error message just happens to be a quirk in

the coding.

If the short pseudo-compute SPCS is not specified, the error

message will be,
"CNQUIK REQUIRES SHORT PSEUDO-COMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient -
(NDIM < (2*NND + NNA), the message will be,

" LOCATIONS AVAILABLE'

Note that the number printed will be negative indicating the additional

storage locations required.

If the time-step used is less than the time-step allowed (DTIMEL),

which may‘be optionally specified by the user, the message will be,
"TIME STEP T@¢ SMALL"
If CSGMIN 5.0, the message printed will be,

"CSGMIN ZER$ or NEGATIVE"
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Checksyon'the control constants, the pseudo-compute sequence
and the dynamic storage allocation are made in the following sequence with

the run termirating if a single check is niot satisfied,
$UTPUT, pseudo-compute sequence, dynamic storage locatioms.

It should be particularly noted that no message is printed if
ARLXCA is not satisfied with NL@@P iterations; ARLXCA and NLGPP are

qptionaily specified control constants.
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10.

11.

12,

13.

14.

Table 6.3~5. Basic Computational Steps for CNQUIK

Specification of control constants. Control constants PUTPUT and
TIMEND must be specified. SPCS is required for CNEXPN. (Refer to
Table €.2-5 for values and Section 6.2.3.2 for description.)

Sufficiency check on dynamic storage. Requirements = 2(NND) + NNA
(NND = diffusion nodes and NNA = arithmetic nodes).

Setting and/or calculation of time—step, At. (Refer to Section 6.2.4

for detailed procedure.) Calculated time-step = 0.95%CSGMIN*CSGFAC.

Setting of source and diffusion node dynamic storage locations to zero.
Calling of VARIABLES 1. (Refér’to‘Section 6.2.2.2 for description.)
Checking of BACKUP. (Refer to Section 6.2.3.2 for deseription.)

Calculation of dlfqulon-node temperatures. (Refer to Section 6.2.5.1
for description.)

Diffusion-node temperatures are calculated by using (refer to
Section 6.3.5.2),

= (T 3/2.0

Tinv1 = Toxpurr * Toxexen
(Refer to equation 6.3-17, Section 6.3.5.2.)

Erasure of all temperature calculations for latest time-step if
allowable temperzture change criterion DTMPCA is not satisfied and
temperature recalculation with reduced time~step.

Calculation of arithmetic-node temperatures; if the number of
iterations equal NL@PP, the temperatures are retained without user
notification. (Refer to Section 6.2.5.1 for details.)

Erasure of all temperature calculations for latest time-step if allow-
able temperature change criterion ATMPCA is not satisfied and tempera-
ture recalculation with reduced time-step.

Calling of VARIABLES 2 and checking of BACKUP. (Refer to Section
6.2.2.3 and 6.2.3.2 for description.)

Advancing of time, checking of time to print, and the printing at the
output -interval.

Calling of $UTPUT CALLS.

Checking for problem end time stofed in user specified control constant
TIMEND,
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Check and set control constants .

L

Initialize pointers

¥

Initialize and adjust time-step '

3

Set source locations to zero; dinitialize

XSPACE, eall VARIABLES 1

Update €3, g3, Gy; compute Qguy and
Ggym for each diffusion node

F

y

Compute CSGMIN; compute diffusion-node temperatures
by half DuFort-Frankel and half exponential

prediction method; compute DTMPCC

Check and adjust
time-step

!

Undo diffusion-node
temperature calculations

Shorten
time-step

A

Update qi & Gy once each time-step.
Compute arithmetic-node temperatures
by successive point iteratiom

[

Compute ATMPCC

No

Yes

Call VARIABLES 2

3

& BACKUP # () =

No

| If time to print
call QUTCAL

pfeeed Update time

Figure 6,3-7.
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6.4 Trznsieat Implicit Solution Routines

SINDA implicit solution routinesvnumber three; theSe routines
are identified as follows:

CNBACK Implicit backward difference method.

Requires long pseudo-compute sequence (LPCS).

CNFWBK Implicit forward-backward differencing, using
Crank-Nicolson method.

Requires long pseudo-compute sequence'(LPCS).

'CNVARB Combination of CNBACK and CNFWBK.

Requires long pseudo-compute sequence (LPCS).

‘Implicit methods generally tend to be more accurate than explicit
methods and are unconditionally stable as are some explicit methods. With
implicit methods the time-step is specified in contrast to the calculated
time-steps of explicit methods with their stability criterion. An important
consideration in the use of impiicit methods is that the time;step DTIMEL
should be specified in conjunction with control constant NL@PP which
represents the maximum number of computational iterations during each time-
etep. Since each iterative calculation is essentially equivalent to a
time-step calculatioﬁ for an explicit method, the combination of DTIMEL end
NLG@P for a given time period.should be set less thaﬁ the total number of
time-steps used by the explicit method for the same time period, if com—
putational time is to be reduced; this of coufse assumes that during each
‘time-step the maximum number of iterations is required. If the NL@gP
iterations are required during a time-step, the temperature accuracy is
affected but the magnitude would- depend upon the value used for the maximum
allowable relaxation temperature change crlterla, ARIXCA and DRLXCA. It
should be noted if NLO@P iterations are required durlng a time-step, the
message "RELAXATION CRITERIA NOT MET" is printed.

A detailed description of each implicit routine, as presented
on the pages to follow, relies on the general description of Section 6.2. A

brief description of these routines is summarized first.

CNBACK uses the standard backward differencing algorithm and

requires the long pseudo-compute sequence (LPCS). The time-step must be
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specified via comtrol comstant DTIMEI and used in corjunction with the con-

trol constant NL$@P. CNBACK_useS’the acéeleration of convergence feature.

CNFWBK uses the Crank-Nicolson algorithm which is composed of
“ half forward differencing and half backward differencing. CNFWBK solutions
tend to be more accurate than CNBACK solutions with approximately 257 less

iterations; however CNFWBK solutions have "blown" on occasions.

CNVARB uses a combination of forwardAdifferencing and backward
differencing. 'Unlike CNFWBK which is half and half, CNVARB uses a variable
beta factor which ranges from 0 to 1.  Thus CNVARB uses a method that is

somewhere between forward differencing and backward differencing.
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6.4.1 Subroutine: CNEBACK

6.4.1.1 General Comments

Subroutine CNBACK is an implicit routine that uses the standard
backward difference expression and requires the long pseudo-compute (LPCS).
Time-step must be specified via DTIMEI otherwise the "run" will terminate
with an error message printout. The time-step value is arbitrary but the
user should consider DTIMEI in conjunction with thé control censtant NLAGP
which represents the maximum number of computational iterations during each

time-step (refer to Section 6.2.3.2 for description). _

Implicit methods tend to be more accurate than explicit methods
and are unconditionally stable, but implicit solutions often oscillate at
start up or boundary step changes when heat transfer by radiationm is
present. CNBACK intefnally controls sudden radiation heat transfer
changes by an averaging technique which is termed '"radiation damping" (refer
to Section 6.2.6 for details). This automatic damping has been very'effec—

tive in many solutions that have been examined and lessens the need for the
use of DAMPD and DAMPA.

6.4.1.2 Finite Difference Approximation and Computational Algdrithm

' The numerical solution algorithm used in subroutine CNBACK is
the standard backward-difference expression}z’m’17 which may be expressed'

as:

T - T
C ( i,nt+l i,n) g

- = q, +
i At ) i,n j=1

a5 Ty ne1 ~ Ti,nea)

+ 2 o, @
ab,. (T,
j=1 i 3

4
ot~ T, n)
(equation 5.2-5 of Section 5.2.2)
i = 1’2’ e e 8 ’N

T constant, N < j <p

j,n+1.=

T—i,n = T, (nlt)

The computational procedure for the backward difference formula-
tion must necessarily be re~iterative because of the need to solve a set of

simultaneous nonlinear equations.
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®

Diffusion Nodes

Diffusion node temperatures are solved by "successive point" \
iteration but differs from the arithmetic~ncde temperature calculation 3
because of the capacitance term and the use of "radiation damping" (refer
to Section 6.2.5.2).

= *
Tierr = PO% T3 o
— : i P
CiaTin T Y +j§1Gij 0 T,k +.=}i: o 4d,m T,k T (93 ave :
+ DN* - — > 1 (6.4-1)
C, _ + I a,,
i,n j=1 diJ,n
where, i=1,2,...,NND
n = nth time-step
kK = kth iteration
DN = DAMPD (diffusion-node damping factor):
3 : -~
4300 = 215,0 T “Pij,n Tj,2 (L=kif § > 1and L = ktl if j < 1)
Ci’qi’aij’bij = optionally specified (refer to Tables 6.2-1 ~ 6.2-4)
E; = n/At (At = time step, refer to Section 6.2.4)
> 3
4 4 4
(qi)ave = 3 Gbij n [('1‘i k) + (Ti k)2]/2.0, average heat loss from
j=1 » ’ s :

the ith node (refer'to Section 6.2.6 on radiation damping for
details)

Details on the computational procedure for implicit routines are

presented in Sections 5.2.2 and 6.2.5.2.

Arithmetic Nodes

Arithmetic-node temperatures are calculated identically the same
in all the SINDA numerical solution routines. Thus, refer to either
Section 6.3.1.2 or Section 6.2.5.2 for the finite difference algorithm.

6.4.1.3 Comments on the Computational Procedure

The important steps of the computational procedure used in sub-
routine CNBACK are indicated in Table 6.4-~1. For a detailed step-by-step

computational description, the user must examine the computer listing for
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CNBACK in Appendix B, but some general computational details are given in
Y Section 6.2.5.2. A functional flow chart of CNBACK is shown in Figure 6.4~1,

Both diffusion—node temperafures and arithmetic-node temperatures
are calculatédrby “successive point" iteration. Each third iteration,
diffusion-node temperatures which are decreasing over two time-steps are
extrapolated in an attempt to accelerate convergence (refer to Section 6.2.7).
Temperature convergence 1s examined during each time-step by checking DRLXCC
and ARIXCC against the user control constants DRLXCA (for diffusion nodes)
and ARLXCA (for arithmetiec nodes), respectively. If temperatures have not
converged with NLY@P iterations, the message "RELAXATION CRITERIA NOT MET"
is printed. Control constant NLP@P is used to specify the maximum number of

iterations allowed during each time-step.

VARIABLES 1 and VARIABLES 2 are performed only once for each time-
step. Since this subroutine is implicit, the user must specify the time-
. 8tep to be used through the control constant DTIMEI in addition to céntrcl
éonstant TIMEND and QUTPUT. The look ahead feature for the time-step
calculation used in CNFRWD is also employed in CNBACK as are checks for
‘maximum allowable time-step DTIMEH, mhximum allowable temperature change
between time-steps, DIMPCA (diffusion nodes) and ATMPCA (arithmetic nodes).
The minimum time-step DTIMEL is not checked however. Damping of solutionms
can be achieved through the use of the control constants DAMPD and DAMPA
but "radiation damping" (refer to Section 6.2.6) used by CNBACK lessens the
'need for the damping factors DAMPD and DAMPA.

6.4.1.4 Control Constants

Control constants ARLXCA, DRLXCA, DTIMEI, NL@@$P, $UTPUT, and
TIMEND ﬁust be specified as indicated in Table 6.2-5 and és described in
Section 6.2.3.2; otherwise "run" will terminate with an appropriate error
meséage. The function of optionally specified control constants ATMPCA,
BACKUP, DAMPA, DAMPD, DTIMEH, DTMPCA,'aﬁd TIME@ is described in
Section 6.2.3.2. '

Specification of time-step DTIMEI should be done in conjunction
with control constant NL@PP which represents the maximum number of com-
putational iterations during each time-step. Since each iterative calcula-

tion is essentially equivalent to a time~step calculation for an explicit
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method, the combination of DTIMEI and NL@@P for a given time period should
be less than the total number of time-steps by the explicit mgthod for the
same period. Note also that TIMEf may be set negative. Specification of
ARLXCA and DRLXCA dependé upon the problem but a ctypical value is 0.1l.

6.4.1.5 Error and Other Messages

If control constants ARLXCA, DRLXCA, DTIMEI, NLOPP, QUTPUT and

TIMEND are not specified, the following error message will be printed for

each,
ARLXCA NG ARLXCA"
DRLXCA "N¢ DRLXCA"
DTIMEI "Ng DTIMEI"
NLAGP "N$ NLgP"
$UTPUT "N @UTPUT INTERVAL"
TIMEND "TRANSIENT TIME NPT SPECIFIED"

If the long pseudo-compute sequence LPCS is not specifiéd, the

error message will be,
"CNBACK REQUIRES LONG PSEUDO-COMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient
(NDIM < (3*NND + NNA + NNB)), the message will be,

" LOCATIONS AVAILABLE"

Note that the number printed will be negative indicating the additiomnal

storage locations required.

If CSGMIN < O, the following message will be printed,

"CSGMIN ZER$ or NEGATIVE"

If either ARLXCA or DRLXCA is nct satisfied with NL@@P iteratioms,

the following message will be printed, -
"RELAXATI¢N CRITERIA NgT MET"

Checks on the control constants, the pseudo-compute sequence
and the dynamic storage allocation are made in the following sequence with

the "run" terminating if a single check is not satisfied,

NLO$P, TIMEND, @UTPUT, ARLXCA, DTIMEI, DRLXCA, LPCS and dynamic

storage allocation.
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'90
10.

11.

12.
13.

14,
15.

16.

17.
18.

19.

20,

.21,

Table 6.4-1. Basic Computational Steps for CNBACK

Specification of control constants. Control constants ARLXCA (if
NNA > 0), DRLXCA (if NND > O), DTIMEI, NL@@P, @GUTPUT and TIMEND
(TIMEND > TIMEP) must be specified. LPCS is required. (Refer to
Table 6.2~5 for values and Section 6.2.3.2 for description.)

Sufficiency check on dynamic storage. Requirements = 3*NND + NNA + NNB
(NND = diffusion nodes, NNA = arithmetic nodes and NNB = boundary nodes).

Setting and/or calculation of time-step, At. (Refer to Section 6.2.4
for detailed procedure.) Time~step = DTIMEI. '

Setting of iterative D§ loop, 1 to NLHPP.

Setting of source locations to zero.

Calling of Variables 1. (Refer to Section 6.2.2.2 for description.)
Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)
Diffusion—node temperature calculations, first iteration only.
Evaluation of q;, C; and G .. '
Damping of radiation heat tramnsfer. (Refer to Section 6.2.5.2.)
Calculatioﬁ of diffusion-node temperatﬁre.

The computational algorithm depends upon the presence of radiation
heat transfer, but the method of solution is the standard implicit
algorithm (refer to Section 6.2.5.2).

Conversion of T to degrees Rankiné.

i,k+1 ;

Diffusion-node temperature calculations, successive iterations after first.
Repeating of step 8, except that 9y, Ci and Gk are not updated.

Calculation of DRLXCC. |

Acceleration of convergence every third iteration if linear extrapola-
tion is met (refer to Section 6.2.7).

Conversion of Ti,k+1 to degrees Fahrenheit.

Calculation of arithmetic-node temperatures, second and succeeding
iterations; arithmetic-node temperatures are not calculated on the
first iteration (refer to Section 6.2.5.2 for details).

Conversion of temperatures to degrees Rankine.

- Checking of ARLXCA and DRLXCA for convergence and @$PEITR for output.

If both ARLXCA and DRLXCA are satisfied, iterations during a time-step
ceases, otherwise NL@{}P iterations are performed.

Checking of ATMPCA and DTMPCA. If either one is not satisfied time-step
is shortened, previous temperatures erased, and temperatures recalculated
for shortened time-steps (refer to Section 6.2.5.2).

Conversion of temperatures back to degrees Fahrenheit.

Calling of VARTABLES 2 and checking of BACKUP (refer to Section 6.2.2.3
and 6.2.3.2).

Advancing of time, checking of time to print, and the printing of the
output interval.

Calling of $UTPUT CALLS.

Checking for problem end time stored in control constant TIMEND.
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< CNBACK }

Check and set control constants - ]

t

Initialize pointers I
L

= -
[‘Hmmtep calculations _]

\V

4
Start iterative loop, K1l = %, NLMPJ
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¥

€all VARIABLES 1_1

Yes

CKUP # Q
No

Print if PPEIIR # gl

P NXD LNSPS, evaluate qy, €y, Gy; damp radiation;
calculate CSGMIN; evaluarte diffusion-node temperatures
using standard impiicit algerithm. Convert temperatures
te degrees Rankine .

Dg NSD LOPPS: €y, qq, Gy are not updated; damp xediaticn;

evaluate diffusion-node temperatures using standard implici’
‘algorithm; compute DRLXCC

¥

Acceleration of convergence every third iterationm.

}
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¥

DP NNA LOPPS evaluate q4 and Gy once only each time-step;
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Convert temperatures to degrees Rankine.

Bo

ARLXCC < ARLXCA

DRLXCC < DRLXCA
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Compute DTMPCC] -

Yo
DIMPCC < DTMPCA

Storten Undo diffusion~node
time~step temperature calculations

Yes

Compute ATM.PCC

No
ATMPCC < ATMPCA
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Yes

lConver: teuperatures to degrees Farhenheit

If time to print | NEND
call $UTCAL * < &

Ve

A

Tes

No

Call VARIABLFS 2 FACKUP $ 6 Update time

‘ Retu'rn,

6.4-1.. Functional Flow Chart for’ CNBACK
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6.4.2 Subroutine: CNFWRK

6.4.2.1 General Comménts

Subroutine CNFWBK is an implicitrnumerical solution routine that
uses the Crank-Nocolson algorithm.7’ 8s 12 The long pseudo-compute sequence
(LPCS) is required and the nodal temperatures (both diffusion and arithmetic)
are solved by "successive point" iterations. The iteration looping, con-~
vergence criteria and other control constant checks are identical to CNBACK.
Time~step must be specifiéd via control constant DTIMEI. Diffusioﬁ and
arithmetic temperature calculations may be damped through the use of DAMPD
and DAMPA, respectively. Thermal radiation heat transfer is uniquely
"handled" via a so-~called "radiation damping" (refer to Section 6.2.6),
énd acceleration of convergence (refer te Sectiom 6.2.7) is also available
in CNFWBK.

CNFWBK solutions which are based on a half forward differencing
and a half backward differencing method tend to be more accurate than CNBACK

solutions with approximately the same seclution time.

6.4.2.2 Finite Difference Approximation and Computational Algorithm

‘ ‘The numerical solution algorithm used in subroutine CNFWBK is the
Crank-Nicolson method, which is half forward differencing and half backward

differencing, and may be expressed as:

@ -T. )
ikl i.n 1
€y At 2 (Tforward * Ty ackward’ (6.4-2)
: RO, - 4 _ 4
Torward T %40 + =1 aij,rﬁTj,n" Ti,n) + jzl Gbij,n(Tj,n- Ti,n) (6.4-3)
T = + g 4 4 4
backward © Y0 ¥ F) 2150 Tgunn” Toma) * E Pryin (O pn Tian) (64479

=1
nth4time—step
1=1,2,...,N

p = total number of nodes

n

T s T

o8 Ty,mey T comStamE, N <3<
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The computational procedure fer the forward-backward difference
formulation must be re-iterative because of the need to solve a set of
simultaneous nonlinear equations. The pattern of computation is very
similar to that used in CNBACK.

Diffusion~Nodes

Diffusion node temperatures are solved by "successive point"
iteration but the algorithm differs from the algorithm used in CNBACK
because of the additional terms arising from the forward difference

portion of the expression.

= DD* % - -0
Ti,k+1 bD Ti,k + DN [qum (qi)ave]/Gsum (6.4-5)
A i P
where, Qg =Q * jil 213,m ikl T j.=§+1 31,0 i,k
i 4 P 4 -
+ I ob T + I ob, T (6.4-6)
jer den LT 2 Piin Tk
— P
Qi = 2 qi,n + 2 ci,n Ti,n + jEl aij,n (Tj,n - Ti,n) (6.4~7)
¥ 6
Gsum =2 Cint I 4550 (6.4-8)
j=1
n = nth time-step; k = kth iteration
Ci’qi’aij’bij = optionally specified (refer to Tables 6.2-1 - 6.2-4)
DN = DAMPD (diffusion-node damping factor)
DD = 1.0 - DN
Ci,n = Ci,n/At (At = time-step)
- 4 &
(qi)ave = Z,Ubij,n [(Ti’k)<+ (Ti,k)Z]/Z'O’ average heat loss from

ith node (refer to Section 6.2.6 on radiation damping
| ' for details) -
(Note that the known quantities at time-step, n, are indicated by Qi’
equation 6.4~7.)
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Avithmetic Nodes

Arithmetic-node temperatures are calculated identically the same
in all the SINDA numerical solution routines. Thus, refer to Section
6.3.1.2 or Section 6.2.5.2 for the finite difference algorithm.

6.4.2.3 Comments on the Computational Procedure

The important steps of the computational procedure used in sub-
routine CNFWBK are lndicated in Table 6 4~2., For a detailed step-by-step
computatlonal description, the user must examine the computer listing for
CNFWBK in Appendix B, but some general computational details are given in
Section 6.2.5.2. A functicnal flow chart of CNFWBK is shown in Figure 6.4-2.

The computaeional flow patterh for CNFWBK is identical to CNBACK
with the only difference between the routines being the diffusion-node
temperature finite-difference algorithm. On the first iteration only the
source locations zeroed out and the present temperatures stored, VARIABLES 1
is calle& and variable Ci, impressed source 9y and variable coefficjents
Gi (diffusion-diffusion and diffusion-arithmetic) evaluated. All quantities
which are evaluated at time, tn,,are summed in accordance with equations
(6.4-6) and (6.4~8). CSGMIN is evaluated and the diffusion-node tempera-
tures calculated; note the arithmetic-node temperatures are not calculated
on the first iteration.

On the second and succeeding‘iterations the quantities Ci’,qi and
Gk (diffusion-diffusion and diffusion-arithmetic) are not updated.
Diffusion-node temperatures are calculated and DRLXCC determined. Every
third 1terat10n, if a diffusion-node temperature is converging, alllnear
extrapolation to accelerate convergence is performed (refer to Section 6.2. 7)
If arithmetic nodes are encountered, the appreprlate 9 and Gk (for arithme-
tic nodes) are evaluated once per time-step. ~Arithmetic-node temperatures

are calculated:and ARLXCC determined.

Control constants DRLXCC and ARLXCC are checked against DRLXCA and
ARLXCA, reepectively each time-step; if both criteria are satisfie& the
iterations cease, otherwise the iterations continue NLAPP times and the
message "RELAXATION CRITERIA NOT MET" is printed.

Diffusion-node and arithmetic-node temperature changes between

d time-steps are calculated and stored in DIMPCC and ATMPCC, respectively.
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If DIMPCC > DIMPCA or if ATMPCC > ATMPCA, the just completed calculations

are erased and the time-step shortened (refer to Section 6.2.5.2).

6.4.2.4 Control Constants

The control constants for CNFWBK are used in exactly the same
way as used in CNBACK. Control constants ARLXCA, DRLXCA, DTIMEI, NLEOP,
¢UTPUT, and TIMEND must be specified as indicated in Table 6.2-5 and as
. described in Section 6.2.3.2; otherwise "run" will terminate with an
appropriate error message. The function of optionally specified control
constants ATMPCA, BACKUP, DAMPA, DAMPD, DTIMEH, DTMPCA, and TIMEM is
described in Section 6.2.3.2.

Specification of time-step DTIMEI should be done in conjunction
with control constant NL@PP which represents the maximum number of com-
putational iterations during eéch time~step. Since each iterative calcula-
tion is essentially equivalent to a time-step calculation for an explicit
methed, the combination of DTIMEI and NL@PP for a given time périod should
be less than the total number of time-steps by the explicit method for the
same time period. Note also that TIME$ may be set negative. Specification
of ARLXCA and DRLXCA depends upon the problem but a typical wvalue is 0.1.

6.4.2.5 Error and Other Messages

If control constants ARLXCA, DRLXCA, DTIMEI, NL@¢P, @UTPUT and

TIMEND are not specified the following error message will be printed for

each, .
ARIXCA "N@g ARLXCA"Y
DRLXCA “Ng DRLXCA"
DTIMEL “"Ng DTIMEI"
NL#gP "NG NLggP"
@UTPUT "Ng GUTPUT INTERVAL"
TIMEND "TRANSIENT TIME N@T SPECIFIED"

If the long pseudo-compute sequence LPCS is not specified, the

error message will be,
"CNFWBK REQUIRES L@NG PSEUD@P-CPMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient
(NDIM < (3% NND + NNA + NNB)), the message will be,
" LOCATIONS AVAILABLE"
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Note that the number presented will be negative indicating the additiomal

storage locations required.
If CSGMIN < 0, the following message will be printed,
"CSGMIN ZER¢ CR NEGATIVE™

If either ARLXCA or DRLXCA is not satisfied with NL@$P iterations,
the following message will be printed,

"RELAXATI$N CRITERIA NPT MET"

Checks on the control constants, the pseudo-compute sequence and
“the dynamic storage allocation are made in the following sequence with

the "run" terminating if a single check is not satisfied,

NLOOP, TIMEND, OUTPUT, ARLXCA, DTIMEI, DRLXCA, LPCS and

dynamic storage allocation.
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. Tsble 6.4~2. Basic Computational Steps for CNFWBK

1. Specification of control constants. Control constants ARLXCA (if
NNA > 0), DRLXCA (if NND > 0}, DTIMEI, NL@@P, $UTPUT and TIMEND
(TIMEND > TIMEO) must be specified. LPCS is required. (Refer to
Table 6.2-5 for values and Section 6.2.3.2 for description.

2. Sufficiency check on dynamic storage.
'~ Requiremeunts = 3*NND + NNA + NNB (NND = diffusion nodes, NNA = arithmetic
nodes and NNB-= boundary nodes) :

'3. Setting and/or calculation of time-step, At. (Refer to Section 6.2.4
for detailed procedure.) Time-step = DTIMEI. '

4., Setting of iterative DY loop, 1 to NLOH@P.

5. Setting of source locatioms to zero. |

6. Calling of Variables 1. (Refer to Section 6.2.2.2 for description.)
7. Checking of BACKUP. (Refer to Section 6.2.3.2 for description.)

8. Diffusion-node temperature calculations, first iteration only. Evalua-
tion of qi, C; and Gy. Damping of radiation heat transfer. (Refer to
" Section 6.2.5.2.) Calculation of diffusion-node temperature. The com-
putational algorithm depends upon the presence of radiation heat trans-
fer, but the method of solution is the Crank-Nicolson algorithm (half
forward and half backward, refer to Section 6.2.5.2).
9. Conversion of Ti,k+l to °R (Rankine). |
10. Diffusion-ncde temperature calculation, successive iterations after
. first. Repeating of step & except that q4,C; and Gy are not updated.
Calculation of DRLXCC.

11. Acceleration of convergence every third iteration if linear extrapola-
tion is met (refer to Section 6.2.7).

12. Conversion of Ti,k+1 to degrees Fahrenheit.

13. Calculation of arithmetic-node temperatures, second and succeeding
iterations; arithmetic-node temperatures are not calculated on the
first iteration (refer to Section 6.2.5.2 for details).

14. Coqversion of temperatures to degrees Rankine.

15. Checking of ARLXCA and DRLXCA for convergence and $PEITR for output.
If both ARLXCA and DRLXCA are satisfied, iterations during a time-
step cease, otherwise NL@@P iterations are performed.

16. Checking of ATMPCA and DIMPCA. = 1If either one is not satisfied time-
step is shortened, previous temperatures erased, and temperatures
recalculated for shortened time-steps (refer to Section 6.2.5.2).

17. Conversion of'temperatures'back to‘degrees Fahrenheit.

18. Calling of VARIABLES 2 and checklng of BACKUP (refer to Section 6.2.2.3
and 6.2.3.2).

19. Advancing of time, checking of time to prlnt, and the printing of the
output 1nterva1.

20. Calling of @UTPUT CALLS.

21, Checking for problem end-time stored in user specified control constant
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6.4-2. Functional Flow Chart for CNFWBK
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6.4.3 Subroutine: CNVARB

6.4.3.1 General Comments

Subroutine CNVARB uses an implicit finite difference algorithm
that is a composition of forward-differencing and backward~differencing.
The proportion of forward to backwar& to be used is calculated internally
by using a weighting factor, B8, that is dependent upon the ratio of the
explicit stability criterion as stored in the control comstant CSGMIN
divided by the computational time-step stored in DTIMEU. The weighting
factdr can vary each time-step but is constrained'to range, 0 < B 5_1/2
(refer to Section 6.2.5.2 or Section 6.4.3.2). A B of one-half yields
the Crank-Nicolson half-forward and half-backward expression, whereas a

B of zero yields the standard backward-difference expréssion.

Except for the weighfing factor, B, the computational procedure
and the use of the various control constants in CNVARB is essentially
identical to subroutine CNFWBK. )

Solution characteristics should be very similar to CNFWBK
solutions with expectation that CNVARB solutions would be more optimum in
terms of accuracy and solution time. Solutions are not presently available

to verify or refute the expected advantages of CNVARB solutions.

6.4.3.2 Finite Difference Approximétion and Computational Algorithm

The numerical solution algorithm used in subroutine CNVARB is
a combination of forward-differencing and backward-differencing with the

weighting of each determined by the ratio of control constants CSGMIN/DTIMEU.

The combination forward-backward differencing with weighting

can be expressed as:

c

2t Tine1 T, < B(qi,n+j§1“ij ,n T ,n-I:L,n)) + jfl"bij,ncrj ;o Ti,n)
. ? P 4 i
+ (1.0 - B) (qi,n+jflaij,n(T’,n+l-Ti,n+l))+j§10bij,n(Tj o+ T ) (6479

1=1,2,.,.,N
n = nth time-step ‘
B = weighting factor (0 < B < 1/2)

T, ;T

1,0 j'ﬁ+l = constant, N< j <p
? 4 ‘
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if equation (6.4-9) is multiplied by 2.0 and the known quantities
‘(at time-step, n) and the unknown quantities (at time-step, n+l) separated,
the algorithm used in CNVARB may be obtained readily. '

Diffusion Nodes

Diffusion-node temperatures are solved by “"successive point"
iteration. The finite difference iterative form as used in CNVARB can
be found 5y multiplying equation (6.4-9) by 2.0 and by using appropriate

time-step, n, and iteration, k subscripts.

Ti,k+l = Dp* Ti,k + DN¥ [qum - (qi)ave]/Gsum (6.4-10)
where, Q = 2 qi’n'+ 2 Ci,n Ti,n
, P P 4 4
+ 8 ( L oa,. (I, -T, )+ L ob,, (¥ -1} (6.4-11)
. ij,n Tj,n i,n . ij,n ' j,n i,n
j=1 =1
i P '
Q =Q, + (2.0-B") I G,, T, .+ I G,. T. ) (6.4=12)
Sum 1 j=1 13 138 J ’k+1 j=i+1 iJ ’n J )k
— , P
= -1 - -13
sum 2 Ci,n  (2.0- B") E aij,n (6.4-13)
j=1
=a + ob 3 (6.4-14)
ij,n ij,n ij,n "3,2 :

%=k, if j > i and £ = k+l, if j < 1)

_nt P : '
e TS (R Cog (6.4-15)

3-1 ij,n

average heat loss from the ith node, called radiation

(qi)

ave 2]

damping (refer to Section 6.2.6 for details)

= (0,if radiation is not present

B'= 2.0*CSGMIN/DTIMEU (range allowed, 0 < B'< 1.0, note B' = 28)

n = nth time-step; k = kth iteration

'ci’qi’aij’bij = optionally -specified (refer to Tables 6.2-1 - 6.2-4)
Ci,n = Ci,n/At
i=1,2,...,NND
T3 o’ Tj x = constant, (NND + NNA) < j < p (p is the total number of
] 2 . :

nodes’and NNA is the number of arithmetic nodes)
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“Arithmetic Nodes

Arithmetic nodes are calculated in the same manner in all the
SINDA numerical solution routines. . For the finite difference algorithm

. refer to either Section 6.3.1.2 or Section 6.2.5.2.

6.4.3.3 Comments on the Computational Procedure

The important steps of the computational procedure used in sub-
routine CNVARB are indicated in Table 6.4~3. For a detailed step-by-step
computational description, the user must examine the computer listing for
CNVARB in Appendix B, but some general computational details are given in

Section 6.2.5.2. A functional flow chart of CNVARB is shown in Figure 6.4~3.-

The computational flow pattern for CNVARB is very similar to
CNFWBK or CNBACK; the slight difference is shown in the flow chart of
Figure 6.4~3. The basic difference between CNVARB and the other two
implicit routines is the use of a variable beta, B', which is calculated
internally by the routine. Thus, the updating of the variable capacitance
Ci’ the impressed source q and the variable coefficients (a,

1]

duction and_Ubij for radiation) during the first iteration and the sub-

for con-

sequent calculation of diffusion-node temperatures in subsequent iterations
are identical to CNFWBK except for the finite difference algorithm.  Use

of the various control constants and checks are identical to CNFWEBK.

6.4.3.4 Control Constants

Control constants for CNVARB are used in exactly the same way as
used in CNFWBK. Control constant ARLXCA,‘DRLXCA, DTIMEI, NL¢@P, QUIPUT,
and TIMEND must be specified as indicated in’Table 6.2-5 and as described
in Section 6.2.3.2; otherwise "run" will terminate with an appropriate
error message. The function of'optionally specified control constants
ATMPCA, BACKUP DAMPA, DAMPD, DTIMEH, DIMPCA and TIMEPY is described in
Section 6.2.3.2.

6.4.3.5 Error apd Other Messages

If control constants ARLXCA, DRLXCA, DTIMEI, NL@@¢P, @UTPUT and

TIMEND are not specified, the following error message will be printed for

each,
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APLXCA YNg ARLXCA"

DRLXCA "Ng$ DRLXCA".

DTIMEL "Ng¢ DTIMEI"

NLAgP "N@ NLOgP"

$UTPUT “Np OUTPUT INTERVAL"

TIMEND "TRANSIENT TIME NPT SPECIFIED"

-If the long pseudo-compute sequence LPCS is not specified, the

error message will be,
"CNVARB REQUIRES LUNG PSEUD@-CPMPUTE SEQUENCE"

If the dynamic storage allocation is not sufficient
(NDIM < (3*NND + NNA + NNB)), the error message will be,

" LPCATIONS AVAILABLE"

Note that the number presented will be negative indicating the additional

storage locations required.
If CSGMIN < 0, the following message will be printed,
"CSGMIN ZER$ or NEGATIVE"

If either ARLXCA or DRLXCA is not satisifed with NL@PP iterations,
the following message will be printed, ‘ '

YRELAXATION CRITERIA NT MET"

Checks on the control constants, the pseudo-cocmpute sequence
and the dynamic storage allocation are made in the following sequence

with the "run" terminating if a single check is not satisfied,

NL@@P, TIMEND, JUTPUT, ARLXCA, LPCS and dynamic storage

allocation.
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Tabie 6.4-~3. Basic Computational Steps for CNVARB

1. Specification of control constants. Control constants ARLXCA (if
NNA > 0), DRLXCA (if NND > 0), DTIMEI, NL@@P, @UTPUT and TIMEND
(TIMEND > TIME@) must be specified. . LPCS is required. (Refer to
Table 6.2-5 for values and Section 6.2.3.2 for description.)

2. Sufficiency check on dynamic storage. Requirements = 3*NND_+ NNA + NNB
(NND = diffusion nodes, NNA = arithmetic nodes and NNB = boundary nodes).

3. Setting and/or calculation of time-step, At. (Refer to Section 6.2.4
for detailed procedure.) Time-step = DTIMEI.

4. Setting of iterative D@ loop, 1 to NLOEP.

5. Setting of source locations to zero.

6. Calling of Variables 1 (refer to Section 6.2.2.2 for description).
7. Checking of BACKUP {refer to Section 6.2.3.2 for description).

8. Diffusion-node temperature calculations, first'iteration only.

Checking of stable stability criteria.

Calculation of weighting factor B'= 2.0*%*CSGMIN/DTIMEU. (0 < B'< 1.0)

Conversion of temperatures to degrees Rankine.

Damping of radiation heat transfer (refer to Section 6.2.5.2).

Calculation of diffusion-node temperatures using forward-backward
algorithm with variable beta (B').

Calculation of DRLXCC. '

9. Diffusion-node temperature calculations, successive iterations after
firet. Repeating of step & except that q4, Ci and Gy are not updated.
Calculation of DRLXCC.

10. Acceleration of convergence every third iteration if linear extrapolation
criterion is met (refer to Section 6.2.7).

11. Conversion of Ti,k&i to degrees Fahrenheit.

12. Calculation of arithmetic-node temperatures every iteration (refer to
Section 6.2.5.2 for details).

-13. Conversion of temperatures to degrees Rankine.

14, Checking of ARLXCA and DRLXCA for convergence and $PEITER for output.
If both ARLXCA and DRLXCA are satisfied, iterations during a time-step
cease, otherwise NLOPP iterations are performed.

15. Checking of ATMPCA and DTMPCA. If either one is not satisfied time-
step is shortened, previous temperatures erased, and temperatures
recalculated for shortened time-steps (refer to Section 6.2.5.2).

16. Conversion of temperatures back to degrees Fahrenheit.

17. Calling of VARIABLES 2 and checking of BACKUP (refer to Section 6.2.2.3
and 6.2.3.2).

18. Advancing of time, checking of time to print, and the printing of the
output interval.

19. Calling of @UTPUT CALLS.

20. Checking for problem end time stored in user specified control constant
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6.5 Steady State Numerical Solution Routines

SINDA steady state numerical solution routines number- three.

’_ﬁhese steady state routines are identified as follows:

CINDSS Block iterative method

Requires short pseudo-compute sequence {(SPCS)

CINDSL Successive point iterative method

Requires long pseudo—compute‘sequence (LPCS)

CINDSM Modified CINDSL for radiation-dominated problems

Requires long pseudo-ccmpute sequence (LPCS)

A detailed'description of steady state routines is presented in
the pages to follow with liberal reference to materials presented in

Section 6.2. A brief description of these routines follows.

CIﬁDSS which uses the short pseudo-compute sequence (SPCS) was
the first steady state routine developed for SINDA (via CINDA and CINDA-3G);
as a result, some of the features contained in subsequent steady state
routines are not used in CINDSS. If a transient analysis is to.be performed
following_a steady state analysis,.CINDSS must bée used with a transient
routine that also requires SPCS. The "block" iterative method (refer to
Section 5.2.3) used by CINDSS should lend itself to some types of problems
which are‘highly nonlinear with terms such as Gij (T; - Tg). With "block"
iteration, both Tj and Ti are changed simultaneously. Solution convergence
is based upon a temperature relaxation criterion stored in DRLXCA for
diffusion nodes and ARLXCA»for arithmetic nodes.

CINDSL requires the long pseudo-compute sequence (LPCS) and uses
the "successive point" iteration method (refer to Section 5.2.3). Any
transient analysis routine coupled with CiNDSL must require LPCS. Solution
time for CINDSL is less than CINDSS; as a result, it is used more often
than CINDSS. A major problem with CINDSL is that a highly nonlinear
problem can present convergence difficulties unless considerable amount of
damping is used. For example, a radiation—dominated problem contains many
obij (Tg - Ti). With "successive.point" iteration, Tj'may be updated and
Ti not for a given conductor; as a result, the resultant heat flow
calculation could present difficulties because of large change in values.

CINDSL has the acceleration of convergence feature, whereas CINDSS does not.
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Solution convergence is based upon temgéréture relaxation criterion stored
in DRLXCA for diffusion nodes and ARLXCA for arithmetic nodes.

CINDSM is the latest addition to the SINDA library of steady
state routines. CINDSM requires the Jong pseudo-compute sequence and uses
"successive point" iteration. The routine was specifically developed to
solve radiation-dominated problems. Solution convergence is based upon

system energy criterion stored in BALENG.
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6.5.1 Subroutine: CINDSS

6.5.1.1 General Comments

Subroutine CINDSS is a steady state routine that requires the
short pseudo-compute sequence (SPCS) and ignores the capacitance values of .
diffusion nodes to calculafe steady étate»temperatures. Diffusion nodes are
solved by a "block" iterative method as discussed in Section 6.5.2.3, whereas
arithmetic nodes are solved by a "successive point" iterative method also
discussed in‘Section 6.5.2.3. For steady state solutions diffusion nodes are
not necessary; as a matter of fact, solutions will be achieved more quickly
if all diffusion nodes are specified as arithmetic. The use of diffusion
nodes in a steady state solution allows for the direct use of the transient

‘model.

A series of steady state solutions at various points in a time
period can bé accomplished by specifying cqntrol constants TIMEN and $UTPUT.
@UTPUT is used both as the output interval and the computational interval.
The instructions with the'appropriate call are made in VARIABLES 1 to modify

boundary conditions with time.

The CINDSS call can be followed by a call to one of the transient
solution subroutines which has the same short pseudo-compute sequence
requirements such as CNFRWD. In this manner the steady state solution
becomes the initial conditions for the transient analysis. It is important
to remember that control constants specified for the steady state routine
will be used by the transient routine unless initialized to the desired
values. Since CINDSS utilizes control constants TIMEND and @UTPUT for the
steady state~transient problem, the user must specify their values in the
execution block after the steady state call and prior to the transient
analysis call. CINDSS does not utilize the acceleration of convergence

feature as discussed in Section 6.2.7.

Solution conVergence'is based upon a temperature relaxation
criterion stored in control constants DRLXCA for diffusion nodes and ARLXCA
for,arithmetic nodes. Normally, identical values are specified for both
DRLXCA and ARLXCA. Sufficient information is not preSently available to
indicate different values for DRLXCA aﬁd ARLXCA. A method to indicate the

accuracy of the "converged" temperatures is not presently available. It
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shoucld also be noted that "converged" temperatures could have large system

energy unbalance.

6.5.1.2 Finite Difference Approximation and Computational Algorithm

The steady state heat balance equation at the ith node may be
readily expressed as,
P

P 4
q.+ Z a_ (T, ~-T,)+ Z ob,, (T, ~-T
24 =1 iy 3 i’ j=1 ij 7]

fi") =0 (6.5-1)

i

1’2’QO’N

Tj = constant, N < j < p

Equation (6.5-1) represents a set of nonlinear algebraic équations
to be solved simultaneously. Since CINDSS solves temperature of nodes
specified as diffusion (nodes with capacitance even though a steady state
solution is desired) by the "block" iteration method and temperatures of
nodes specified as arithmetic (no capacitance) by the "successive point™

iteration method, two successive approximation algorithms are used.

Diffﬁsion Nodes (if any)

‘ P
%
. | DN (qi,k f;izl Gij,k Tj,k) .
Ti,kﬁi = DD Ti,k_+ -P = (6.5-2)
Z G,
j=1 ij,k
where, k = kth iteration; i = 1,2,...,NND (number of diffusion nodes)
qi’aij’bij = may be optionally specified (refer to Tables 6.2-1 - 6.2-4)
Tj k:= constant, - (NND + NNA) < j < p (NNA is the number of arithmetic
» o
nodes and p is the total number of nodes)
_ 2 2
Gyg,k ™ 245,k ¥ i Ty ¥ 10 Ty ¥ T30
DN = DAMPD (diffusion node damping factor)

[

DD = 1.0 - DN

Arithmetic Nodes (if any)

i P
*
ANF gy o+ I Gy p To g ® T Gy Tyid
4=1 ‘ =i+1

T = AD* T, . +

i,k+1 i,k P

I G,
3= ij,k



where, k = kth iteration; i = (NND + 1), (N¥D + 2),..., (NND + NNA)

qi’aij’bij = optionally specified (refér to Tables 6.2-1 - 6.2-4)
Tj k = comstant, (NND + NNA) < j < p (NNA is the number of
9

arithmetic nodes and p is the total number of nodes

_ 2 2
Sugi ™ 2ag,ct Page Tyn ¥ Ty Yyt T
(L =%k, if § > 1 and & = ktl, if j < 1)
AN = DAMPA (arithmetic node damping factor)

AD

l.OfAN

6.5.1.3 Comments on the Computational Procedure

The important steps of the computational procedure used in the
steady state subroutine CINDSS are indicated in Table‘6.5—l. For a detailed
- procedural description, the user must examine the computer listing for CINDSS
in Appendix C, but some genéral computational details are given in Section
6.2.5.3. A functional flow chart of CINDSS is shown in Figure 6.5-1. The

user is required to specify the maximum number of iterations to be per-
formed via control constant’NL¢¢P and the diffusion-node temperature change
relaxation criteria DRLXCA and the arithmetic-node temperature change
critéria ARLXCA. The iterations coﬁtinue until either NL@PP is satisfied
or both DRLXCA and ARLXCA are satisfied. If DRLXCA and ARLXCA are mnot
satisfied with NL@YP iteratiomns, an appropriate message is printed.
VARIABLES 1 and @QUTPUT CALLS are performed at the start and VARIABLES 2 and
@UTPUT CALLS are performed upon completion. Control cénstants DAMPD for
diffusion nodes and DAMPA for arithmetic nodes are so-called damping factors
which are multipliers of the "new" temperatures; the factor 1.0 - DAMPD
(or 1.0 - DAMPA) is a multiplier for the "old" temperatures. - This
weighting of "old" and "new" temperatures is useful for damping oscilla~
tions due to nonlinearities. For nonlinear systems, the damping factors
“are specified to be less than one. If not'specified, the damping factor
is set to 1.0. As a point of interest, it appears that if a linear system
is to be solved, the convergence could be acceleraﬁed by using the damping
factor greater than one. The diffusion nodes receive a "block" iterationm,
_ whereas the arithmetic nodes receive a "successive point" iteration;

acceleration features are not utilized.
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6.5.1.4 Control Constants

i
[
J

'Cohtrol';onstant NL@@P must be specified and control constants
ARLXCA and DRLXCA must be specified if NNA >0 aﬁd;NND > 0, respectively;
other&ise "run" will terminate with an appropriate errof message. Control
constants DAMPA and DAMPD may be bptionally specified among others. Control
constént characteristics are tabulated’in Table 6.2-5 and description of
these control'constantAis presented in Sectiomn 6.2.3.2. Speéificatidn of

‘NL¢¢? is dependent upon the values of ARLXCA and DRLXCA and thus the
accuracy of solution. Since the type of problem will influence accuracy, it
appears that a trial and error procedure is the only practical way of

determining realistic control constant values.

6.5.1.5 Error and Other Meésages

If control constants-ARLXCA, DRLXCA and NL@PP are not specified,

the following error message will be printed for each,

ARLXCA "N@ ARLXCA"
DRLXCA "N DRLXCA"
NL@pP - "Ng NLggR"

If the short pseudo—compﬁte sequeﬁce SPCS is not specified, the

error message will be,
"CINDSS REQUIRES SHPRT PSEUDO—C¢MPUTE‘SEQUENCE"

If the dynamic storage allocation is not sufficent (NDIM < NND)
will be,

" LOCATIONS AVATLABLE"

Note that the number printed will be negative.indicatingvthe additional

storage locations required.

If both temperature change relaxation criteria ARLXCA and DRLXCA

are not met with NLPPP iterations, the message will be,
"ITERATISN C@UNT EXCEEDED, LOQPCT = "

Checks on the control constants, the pseudo-compute sequence,
and the dynamic storage allocation are made in the following order with the

"run" terminating if a single check is not satisfied.
NL@@P, ARLXCA, DRLXCA, SPCS, and dynamic storage allocation.
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Table 6.5.1. Basic Computational Steps for CINDSS

1. Specification of control constants. Control constants ARLXCA (if NNA > 0),
DRLXCA (if NND > 0) and NL@PP must be specified. SPCS is required.
(Refer to Table 6.2-5 for values and Section 6.2.3.2 for degcription.).

2. Sufficiency check on dynamic storage. Requirements = NND (NND =
diffusion nodes)

3. Setting of TIMEN for first iteration and succeeding iterations.

TIMEN
TIMEN

TIME®, first iteration
TIMEP + QUTPUT, succeeding iterations

4. Setting of iterative loop for all nodés, k1 = 1, NLOPP
3. Setting of source locations to zéro.
6. Calling of VARIABLES 1 (refer to Section 6.2.2.2 for description).

7. Calculation of diffusion-node temperatures by "block" iteration if
NND > 0 (refer to sections 6.2.5.3 and 6.5.1.2).

DN* + 2 G,
o . (q sk 3=1 ij,k J,k)
Tijay = DDF Ty o ¥ P %
L -G i
ij,k
j Js

= DAMPD and DD = 1.0 - DN
8. Calculation of DRLXCC.

9. Calculation of arithmetic-node temperatures by "successive point"
iteration if NNA > O (refer to Sections 6.2.5.3 and 6.5.1.2)}.

— p
®
ANF gy *E Gy e Ty T T Gige Ty
- j=1 =i+l
T = AD* T, . +
1,k+1 ik P
3 G,
4=1 ij,k
AN = DAMPA

10. Calculation of ARLXCC.

11l. Checking of DRLXCC and ARLXCC against the relaxation criteria DRLXCA
and ARLXCA, respectively, for convergence. If both ARLXCA and DRLXCA
are satisfied, iterations cease, otherwise NLP@P iterations are
performed.

12, Calculation of system eneigy balance which is stored in ENGBAL.
13. Call VARIABLES 2 and $UTCAL, print ENGBAL and L@@PCT.
14. Check if TIMEND = TIMEN. | |
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TIMEN + TIME@ (1lst time)

TIMEN = TIMEQ + QUTPUT (succeeding}
¥
Iterative LO@P -
K1 = 1,NLggP
? ea
Set all sources to zero
—
Call VARIABLES 1
k]
[Call OUTPUT CALLS, first pass only

i

Update q4, Gy (diffusion-diffusion, diffusion-
arithmetic); compute diffusion-node temperatures
by block iteration method

L]

Update q4, Gy (arith.-arith.); compute arith.-
node temperatures by successive point iteration No

- Yes

Call PUTPUT CALLS
if @PEITR # 0.0

| Print message

Calculate energy balance
i ]
Call VARIABLES 2

e

TIMEp = TIMEN
i
Call GUTPUT CALLS

Figure 6.5-1. Functional Flow Chart for CINDSS
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6 . 5.2 Subroutine: CINDSL -

6.5.2.1 General Comments

Subroutine CINDSL is a steady state routine that requires the
long pseudo-compute seéuence-(LPCS). Both diffusion~ and arithmetic-node
temperatures are calculated by a "successive point" iteration computational
technique. Every third iteration a linear extrapolation is performed to
accelerate convergence. CINDSL generally yields significantly faster
solutions than CINDSS, but nonlinear problems such as those with radiation
heat transfer can pose considerable convergence difficulties unless a large

amount of damping (low values of DAMPA and DAMPD) is imposed.

A series of steady state solutions at various points in time can
be generated by specifying control constants TIMEND and PUTPUT. @UTPUT
is used both as the output interval and the computation interval; this

- requires appfopriate calls in VARIABLES 1 to modify boundary conditions

with time.

CINDSL can be followed by a call to one of the tramsient numerical
solution routines which have the same LPCS requirements. Used in this
manner the steady state solutions become the initial conditions for the
,transienﬁ analysis. Note that since CINDSL utilizes control constants
TIMEND and @UTPUT for the ccupled steady state-transient problem, the user
must specify the values of TIMEND and @UTPUT in the execution block after

the steady state call and prior to the transient analysis call.

Solution convergence is based upon a temperature relaxation
criterion stored in control constants DRLXCA for diffusion nodes and ARLXCA
for arithmetic nodes. Normally, identical values ar2 specified for both
DRLXCA and ARLXCA for lack of‘anything better. The damping factors DAMPD
for diffusion nodes and DAMPA for arithmetic nodes are merely multipliers
of "new'" temperatures and the factor 1.0 - DAMPD (or 1.0 - DAMPA) is a
multiplier of the "old" temperatures. Normally, these damping.factors are
specified to be less than 1.0, but for a linear system the convergence

.probably could be accelerated by using a damping factor greater than one.

6.5.2.2 Finite Difference Approximation and Computational Algorithm

The set of steady state heat balance equations,
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(T4 4

Ty o) =0

P P
+ X a, (T, ~T)+ I ob
je1 W3 Y
i=1,2,...,N

Tj = constant N< j <p

N 9

is solved by a re~iterative scheme called a "successiﬁe point" iterative
‘method here. Both diffusion~nodé and arithmetic-~node temperatures are
solved in this manner. The only difference between the two algorithms is
that control constant DAMPD is used with diffusion nodes and control

constant DAMPA is used with arithmetic nodes.

. Diffusion Nodes (if any)

i P
(9, +j§1 €15,k Yy,xe1 T J.=§+1 5.k 14,1
=z * % -
Ty gay = DDF Ty + DN - (6.5-4)
I G
oo Si1k

where, i=1,2,...,MD; k= kth iteration |
qi’ai"bi‘ = may be optionally specified (refer to Tables 6.2-1 - 6.2-4)

Tj g = comstant, (NND + NNA) < j < p (NNA is the number of arithmetic
b ]
nodes and p is the total number of nodes)
DN = DAMPD (diffusion-node damping factor)
DD = 1. 0 - DN
= T2 .
G5,k = 253,k * Pig,k (Tj T30 Ty g+ Ty )
=k if j > 1 and 2 = kil if j < 1)
Arithmetic Nodes (if any)
P P
CF jfl Cig.k G T j=§+l Cii,k T4,k
= %* * P haad
Ti,k+1 AD Ti,k + AN > (6.5-5
Z G _ h
gm1 11K
where, i = (NND + 1), (NND + 2),..., (NND + NNA)
qi,aiJ »b j= may be optionally specified (refer to Tables 6.2~1 = 6.2~4)
j g = constant (NND + NNA) < j < p (NNA is the number of arithmetic
3

nodes and p is the total number of nodes)
AN = DAMPA (arlthmetic—node damping factor)
AD = 1.0 -
2 2
= 3 N P S
€15,k = 315,k T Ubij,k T P T Ty, + T30
o (A =kif > 1iand & = kil if § < 1)
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6.5.2.3 Comments on the Computational Procedﬁre

The important steps of the computationai procedure used in
the steady state subroutine CINDSL are indicated in Table 6.5-2. For a
detailed procedural description, the user must examine the computer
listing for CiNDSL in Appendix C, but some general computational details
are given in Section 6.2.5.3. A functional flow chart of CINDSL is shown
in Figure 6.5-2.

The computational péttern of CINDSL is very similar to CINDSS
wifh the differences being that CINDSL uses the lohgvpseudo—compute
sequence, whereas CINDSS uses the short pseudo-compute sequence, and that
CINDSL contains the acceleration convergence feature, whereas CINDSS does
not. The user is required to specify the maximum number of iterations
to be performed via control constant NL@@P and the diffusion-node tempera-
ture change relaxation criteria DRLXCA'and the arithmetic-node temperature
change relaxation criteria ARLXCA. The iterations continue until either
NL@PP is satisfied or both DRLXCA and ARLXCA are satisfied. If DRLXCA and
ARLXCA are not satisfied with NL@¢P, an appropriate message is printed.
Acceleration of convergence is performed every third iteration if a

temperature is converging over two time-steps.

6.5.2.4 Control Constants

Control constant NL@PP must be specified and control constants
ARTXCA and DRLXCA must be specified if NNA > O and NND > 0, respectively;
.otherwise "run" will terminate with an appropriate error message. Control
constants DAMPA and DAMPD may be optionally specified among others. Con-
trol cdnstant characteristics are tabulated‘in Table 6.2-5 and description
of these control comstants is presented in Section 6.2.3.2. Specification
of NL@#PP is dependent upon the values of ARLXCA and DRLXCA and thus the
accuracy of the solution. Since the type of problem will in%luence
accuracy, it appears that a triél and error protedﬁre is the only practical

way of determining realistic control constant values.

6.5.2.5 Error and Other Messages

If control constants ARLXCA, DRLXCA and NL@$P are not specified,
the following error message will be printed for each,
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ARLXCA NP ARLXCA™
DRLXCA "Ng DRLXCA"
NLOGP "N§ NLOGP"

If the long pseudo-compute séQuence LPCS- is not specified,
the error message will be,

"CINDSL REQUIRES L@NG PSEUD@-COMPUTE SEQUENCE"

"If the dynamic storage allocation is not sufficient,
(NDIM < 2% (NNA + NND)), the message will be,
g

" LYCATIONS AVAILARLE"

Note that the number printed will be negative ipdicating the additional

storage locations required.
"L@PPCT = and ENGBAL = "

If both temperature change relaxation criteria, ARLXCA and

DRLXCA, are not met with NL@PP iterations, the message will be,
"ITERATIPN CPUNT EXCEEDED, L@@PPCT = "

Checks on the control constants, the pseudo—-compute sequence,
and the dynamic storage allocation are made in the following order with

the "run" terminating if a single check is not satisfied.

NL@@P, ARLXCA, DRLXCA, LPCS, and dynamic storage allocation.
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9,

10.

11.

13.
14,
15.

‘Table 6.5.2 Basic Computational Steps for CINDSL

Specification of control constants. Control constants ARLXCA (if
NMA > 0), DRLXCA (if NND > 0) and NLO¢P must be specified. LPCS is
required. (Refer to Table 6.2~5 for wvalues and Sectlon 6.2.3.2 for
dexcription.)

"Sufficiency check on dynamic storage. ,Requiremeﬁts'= 2% (NND'+ NNA)

(NND = diffusion nodes and NNA = arithmetic nodes).
Setting of TIMEN for first and- succeeding iteratioms.

TIMEN = TIME@, first iteration
TIMEN = TIMEQ + QUTPUT, succeeding iterations

Setting of iterative loop for all nedes, k1 = 1, NLO@P.

Setting of source locations to zero.
Calling of VARIABLES 1 (refer to Section 6.2.2.2 for descriptionm).

Calculation of diffusion-node temperatures by "bloék",iteration if
NND > O (refer to Section 6.2.5.2 and 6.5.1.2).

. |
DN* (ay oo+ L Gy p Ty ¥ E Gig Ty,00
= DD* T, , + =1 =il
i k+1 ik P 4 '
I c
jop 315k

DN = DAMPD and DD = 1.0 - DN
Calculation of DRLXCC.

Calculation of arithmetic-node temperatures by "successive point"
iteration if NNA > 0 (refer to Sectioms 6.2.5.3 and 6.5.1.2).

i P
* .
AN* (g + I Gy oy J.k+1 R TR
. =1 =441
T - = AD® T, + -
i,k ik P
I G,
3=1 ij,k

Calculation of ARLXCC.
Checking of DRLXCC and ARLXCC against the relaxation criteria DRLXCA -

and ARLXCA, respectively, for convergence. If both ARLXCA and DRLXCA

are satisfied, iterations cease, otherwise NLOOP iterations are
performed. - .

Acceleration of convergence each third iteration, if linear extrapola-

tion criterion is met (refer to Section 6.2.7).

Calculation of system energy balance which is stored in ENGEBAL.

Call VARIABLES 2 and $UTCAL, print ENGBAL and L@@PCT.
Check if TIMEND = TIMEN.
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TIMEQ - (ist time)
TIMES + PUTPUT (succeeding)

TIMER
TIMEN

(/]

¥

Iterative LP@P
K1 = 1, NL@¢@P

~

:

-Set all sources to zero

X

Call VARTABLES 1

K

Call $UTPUT CALLS, first pass only

g

Update q4; Gy (diffusion-diffusion, diffusion-

arithmetic); compute diffusion—node
by successive point iteration '

temperatures

i

Update qj, G (arith.-arith.): compute arith.-
node temperatures by successive point iteration

% No
.,

Call ¢UTPUT CALLS
@PEITR # 0.0

Yes

| Print message

Calculate energy balance

]

Call VARIABLES 2
X

TIME§ = TIMEN
]

Call @QUTPUT CALLS

No

Yes

Creturd)

Figure 6.5-2

'FunctionallFlow Chart for CINDSL
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6.5.3 Subroutine: CINDSM

6.5.3.1 General Comments

Subroutine CINDSM is a steady state routine specifically generated
for radiation dominated problems CINDSM requires the long pseudo-compute
sequence (LPCS) and is considerably different from CINDSL, CINDSM is
based on the use of pseudo linear equations which are the result of
linearizing the radiation conductors. These equations are solved by using
the "successive point" method with LAXFAC iterations. Updating of the |
"properties as well as the linearized conductors occur outside of the
iterative loops. Temperéture convergénce is based on a criterion that is
continually tightened until ‘either the NL@@P iterations or the system

energy balance criterion stored in BALENG has been satisfied.

The acceleration of convergence by linear extrapolation as used
in CINDSM is essentially the same as used in the other SINDA numerical
solution routines, but in lieu of limiting the extrapolation by an allowable
slope value (refer to Section 6.2.7) the maximum temperature change of the

network on the last iteration is used as the allowable value.

Information available at this time indicates that each problem
appears to have an optiﬁum combination of NL@@P, DAMPD, and LAXFAC values.
An NL@@P of 100, a DAMPD of 0.5 and a LAXFAC of 10 has been successfully
applied to spacecraft problems with radiation domination, but the solution

time is rather long.

6.5.3.2 Finite Difference Approximation and Computational Algorithm

The set of steady. state heat balance eqﬁations,

™) = 0

4
qi + Z a (Tj - T

1 j(T-i)+Zcb

3 jm1
1=1,2,...,N
T, = constant, N< j <p

k|

is solved by a re-iterative "successive point" method after linearization.

Linearization is achleved by letting Gb (T - T ) G (Tj - Ti) with
G (T + Ti)(T + Ti)' This ylelds ‘

r " 3
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Diffusion and Arithmetic Nodes

No distinction is made between diffusion and arithmetic nodes.

As a result, the following algorithm applies to both types of nodes,

i - P
. 1 +j£1 S0 T T2 By ER%
= 3 % - - )™
Ty g = DD* T, o + DN — (6.5-7)
L G,.
j=1 ij,L
where, = 1,2,...,(NND + NNA); p = total number of nodes

i
k = kth iteration )
L = before each LAXFAC iterative loop
Tj,k = constant, (NND + NNA) < j <p
DN = DAMPD (diffusion-node damping factor; DAMPA is not used)
DD = 1.0 — DAMPD

- . 2 2
S13,0 7 2ag,n Py G Y00 T
(Gij L is updated once before each LAXFAC iterative loop
b ) .

NNA = number of arithmetic nodes
NND = number of diffusion nodes

qi’aij’bij = may be optionally specified (refer to Tables 6.2-1 - 6.2-4)

6.5.3.3 Comments on the Computational Procedure

A detailed step-by-step computational procedure as used in the
steady state routine CINDSM is presented in Table 6.5-3. For a more
detailed procedural description, the ﬁser must examine the computef
listing in Appendix C. A functional flow chart that is compatible with
the step-by-step description of Tablé‘6.5—3 is shown in Figure 6.5-3.

CINDSM is considerably different from either CINDSS or CINDSL
because of the use of a variable convergence criterion which is internally
updated. Overall, from a total system basis, control constants NL@@P and

BALENG are the ultimate criteria.

It should be particularly noted here that unlike CINDSS or
CINDSL, which use both DAMPA and DAMPD, CINDSM uses only DAMPD. The

reason for this is that CINDSM does not treat the nodal types as diffusion

or arithmetic.
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6.5.3.4 Control Comstant

‘Control constants BALENG, LAXFAC AND NL@YP must be specified;
otherwise the "run" will terminate with an appropriate error message.
Control constant DAMPD may be qptionally specified among others. Control
constant characteristics are tabulated in Table 6.2.5 and description of
these control constants is presented in Section 6.2.3.2. Specification of

BALENG, LAXFAC and NLOOP appears to be a trial and error procedure.

6.5.3.5 Error and Other Messages

If control constants BALENG, LAXFAC, and NL@PP are not specified,

the following error message will be printed for each,

BALENG "N@ BALENG"
LAXFAC "N@ LAXFAC"
NL@¢P "N¢ NLggP"

If the long pseudo~compute sequence LPCS is not specified,

the error message will be,

"CINDSM REQUIRES L@NG PSEUD@-CPMPUTE SEQUENCE"
If the dynamic storage allocation is not sufficient,
(NDIM < (3* NNA + 3% NND + NGT)), the message will be,

" LOCATIONS AVAILABLE"

Note that the number printed will be negative indicating the additional

storage locations required.

If either NLPPP iterations has been made or if ENGBAL < BALENG, the

following message is printed,
"LOPPCT = - and ENGBAL _ .

Checks on the control constants, the pseudo-compute sequence
and the dynamic storage allocation are made in the following order with

the "run" terminating if a single check is not satisfied,

NL@¢P, LPCS, BALENG, LAXFAC and dynamic storage allocation.
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Table 6.5.3. Basic Computational Steps for CINDSM

Specification of contrcl constants.: Control constants BALENG, LAXFAC
and NLOPP must be specified. The long pseudo-compute sequence (LPCS)

© is required. (Refer to Table 6.2-5 for values and Section 6.2.3.2 for

description.)

Sufficiency check on dynamic storage. Requirement = 3*‘(NND + NNA) + NGT
(NND = diffusion nodes, NNA = arithmetic nodes and NGT = total number
of conductors).

Setting of TIMEN for the first and succeeding iterations.

TIMEN
TIMEN

Constants used in CINDSM

NLAX = NL@@P/LAXFAC (both NL@PP and LAXFAC are specified by
the user)

TIME®, first iteration
TIMEQ + ¢UTPJT, succeedlng 1terations

LI |

RELAX = .05 (initial value uséd in CINDSM as the allowable
temperature change) :
DELXXX = ,05/NLAX (a2 number used in reducing RELAX for a tighter
: criterion)
XXXDUM = ,001 (a value of RELAX used in CINDSM for a tlghter
criterion)
= .001/5 (a subsequent value of RELAX for a tighter
criterion) :
DAMP = DAMPD (damping factor for all nodes; DAMPA is not used)

Updating of variables and linearization of radiation .
Variable q; and Gy are evaluated by calling subroutine N@NLIN.

Linearization means that the radiation exchange expressed as Ubi (T. —Ti)
Normally, Gij would be updated each iteration as done in CINDSS 3

or CINDSL, but in CINDSM Gj: is not updated within the D@-LP@P

(k1 = 1,LAXFAC) but is updated outside of the loop.

Iterative DP-LPPP (k1 = 1,LAXFAC) is established.

Temperatures of all nodes are calculated by "successive point" iteration
with no damping. »

i p
G+ I Gij s T TGy Tix
T - =1 j=itl (6.5-5)
1,k > .
I G
=1 H

where, Gj j = a3y + Gb (T + Tz)(Tj + Tl)(qi and GiJ are not updated
during the LAXF%C 1terat10ns) .

Check on temperature convergence. Temperatures have converged if,

1Ty k41 = T4, 1l may < RELAX (= .05)

If temperatures have converged, the computation goes out of the
iteration loop to step (7).
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10.
11.

12,
13.
14,

15..

Table 6.5.3. (continued)

Every third iteration, acceleration of convergence is attempted if -
linear extrapolation criterion is met (refer to Section 6.2.7).

‘Iteration ceases if LAXFAC iterations have been performed or if the

temperatures have converged.

Check on NLAX iterations.

If in step (6) the number of iterations, LOOPCT > NLAX, the computa-

tional procedures go to step (9). However, in step (6) if the number
of iterations LOOPCT < NLAX, then a set of temperature calculations
is made using '"successive point" method with a damping factor and no
iterations. 3 _ >

(qi + I G I G

s To )
4=1 ij J,k+l =il ij i,k

' = *
T k+l DD* T, 1,k + DN

where, DN = DAMPD (diffusion node damplng factor; mnote DAMPA is not used)
'~ G;, = constant

1]
Allowable temperature change criterion RELAX is reduced to,
RELAX = .05 - (.05/NLAX)
end computational prbcedure goes to step (5).

Repetition of steps (5) through (7) except for temperature convergence
criterion.

Temperatures have converged if,

T < RELAX (= .05 - .05/NLAX)

~'Ti,k+1-" i,k‘max

Assuming step (7) has been satisfied, L@PPCT is checked agaiﬁst NL¢E@P.
If LOOPCT > NLOOP, the computation proceeds to step (12).
If LOOPCT < NLOOP computation proceeds to step (10).

Reduce RELAX to .001.
Check on temperature convergence. -
if lTi’k+1 - Ti,kl < RELAX (= .001) go to step (12).
|T ] > RELAX (= .001), LAXFAC is reduced to
i,k+1

‘ LAXFAC = NL@@P - L@@RCT,
and steps (5) through (11) are repeated.

Compute system energy Balance and store in control constant‘ENGBAL,
If LPPPCT > LAXFAC (original user input value), go to step (15)

If LOOPCT < LAXFAC (origlnal user input value), ENGBAL is checked
against BALENG.

- If ENGBAL < BALENG, go to step (14)

If ENGBAL > BALENG, RELAX is set to, RELAX = .001/5, and steps (5)
through (14) are repeateﬂvwith the new RELAX values.

Print ENGBAL; call VARIABLES 2; call @UTCAL; check if TIMEND = TIME@.
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Check aand set control constants

1

Initialize pointers

T

X

Time-step caluclarions

h J

Linearize network

¥

Iterarive loop, kl = 1, LAXFAC

o

¥

Successive point solution on all
save maximum temperature change,

nades
fivy
™

L

K1 = LAXFAQ

Acceleration of convergence
each 3rd iteration

Call PUTPLUT

if @PEITR # O

LPPPCT = LOPPCT + 1 l

Yes

Yes

L#SPCT > NLOGP
' No

[%nduce RELAX to .001

Compute Energy Balance

ENGBAL

Calculate temperatures by
successive point method
with damping DAMPD

Reduce PELAX

| LAXFAC = NLy¢P - L@¢PCT

by .05/N LAX

Set RELAX = ,001/5

Yes
Write ENCBALI

Call VARIABLES 2 ]

6.5-3. Functional Flow Chart for

/
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